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Summary

We propose a new framework for rigorously studying con-

tinuum limits of unsupervised and semi-supervised ma-

chine learning methods on directed graphs. We use the

framework to study the PageRank algorithm and show

that the corresponding continuum limit problem, which

is taken as the number of webpages tends to infinity, is a

second-order, possibly degenerate, elliptic equation that

contains reaction, diffusion, and advection terms. We

prove that the numerical scheme is consistent and stable

and compute explicit rates of convergence of the discrete

solution to the solution of the continuum limit PDE.

Introduction

Unsupervised and semi-supervised machine learning meth-

ods often rely on graphs to model data, stimulating re-

search on theoretical properties of operators on graphs.

Due to the ubiquity of graph Laplacians in graph-based

learning problems, much work has been devoted to un-

derstand and quantify how these matrices can uncover

geometric and distributional structure from unlabeled

data. One popular approach assumes a random geometric

graph with n points and length scale h > 0, and considers

the limit as n → ∞ and h → 0; see, e.g., [1, 3, 4, 5, 6].

Here, the graph vertices are an i.i.d. sample of size n from

a density ρ supported on a d-dimensional manifold M
embedded in RD, and the edge weights are given by

ωxy = Φ

(
|x− y|
h

)
,

where Φ: [0,∞) → [0,∞) is a kernel function. Under

appropriate assumptions, the pointwise consistency result

can be established that a graph Laplacian  L applied to a

test function φ ∈ C3(M) converges to

∆ρφ = ρadiv (ρb∇(ρcφ)) as n→∞ and h→ 0

where ∆ρ is a weighted Laplace-Beltrami operator with

various values of a b, c that depend on the choice of

the graph Laplacian. E.g., for the unnormalized graph

Laplacian, a = −1, b = 2, c = 0, and for the random

walk Laplacian a = −2, b = 2, c = 0. If h → 0 and

n→∞ simultaneously, then the condition nhd+2 � log n

is required for pointwise consistency; it ensures each vertex

has enough neighbors to apply appropriate concentration

of measure results. To obtain O(h) pointwise consistency

rates, it is required that nhd+4 � 1. We contrast this with

the condition nhd � log n required for graph connectivity.

While most of the existing literature focuses on undi-

rected graphs, directed graphs are very important in prac-

tice, giving models for physical, biological, or transporta-

tion networks, among many other applications [2]. In this

talk, we discuss a new framework for rigorously studying

continuum limits of unsupervised and semi-supervised ma-

chine learning methods on directed graphs, developed by

the authors in [7]. This framework is applied to establish

and study a continuum limit for the PageRank algorithm.

Setup and results

To study continuum limits for problems on directed graphs,

we propose a new model that we call a random directed

geometric graph. Let x1, x2, . . . , xn be an i.i.d. sample of

size n on the torus Td = Rd/Zd with density ρ : Td →
[0,∞). We define a weight, ωxy, from x to y by

ωxy = Φ

(
|B(x)(y − x− εb(x))|

h

)
,

where b : Td → Rd and B : Td → Rd×d with B(x) having

full rank for every x ∈ Td. The parameter h > 0 is the

bandwidth of the kernel, and ε > 0 is the strength of the

directionality. We assume the kernel function Φ is smooth,

nonnegative, nonincreasing, and
∫
B(0,2)

Φ(|z|) dz = 1.

When B = I and b = 0 or ε = 0, the weights give a

random undirected geometric graph; for other choices, the

graph weights are directed. The vector field b imparts

directionality. The matrix B can be viewed as changing

the metric locally and for simplicity we take B(x) = I.

We define the degree of x by dn(x) =
∑
y∈Xn

ωn(x, y).

We consider a random walk on the directed graph tran-

sitioning from vertices x to y with probability pxy =

dn(x)−1ωn(x, y). Denoting the teleportation probability

by α ∈ [0, 1] and the teleportation probability distribu-
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tion by v(x), the PageRank vector, denoted rn : Xn → R,

satisfies the linear system

rn(x)− (1− α)
∑
y∈Xn

ωn(y, x)

dn(y)
rn(y) = αv(x),

for all x ∈ Xn; see, e.g., [2]. Simplifying the problem, we

define the normalized PageRank vector, un : Xn → R, by

un(x) =
nhd

dn(x)
rn(x),

which satisfies

un(x)− γ  Lnun(x) =
nhd

dn(x)
v(x) ∀x ∈ Xn, (1)

where γ = (1−α)/α and the PageRank Operator is defined

 Lnu(x) :=
1

dn(x)

∑
y∈Xn

ωn(y, x)u(y)− u(x).

The corresponding problem in the continuum is the,
possibly degenerate, elliptic PDE on Td,

u+ γερ
−2div (ρ2bu)− 1

2
σΦγhρ

−2div (ρ2∇u) = ρ−1v, (2)

where σΦ =
∫

Φ(|z|)z2
1dz, γε = (1−α)ε

α , and γh = (1−α)h2

α .

Denote η = ‖ρ−2div (ρ2b)‖L∞(Td). When γh > 0 and

ηγε < 1, a standard result in elliptic PDEs gives that (2)

has a unique solution u ∈ C3,α(Td).

Theorem 1 ([7, Theorem 2.3], Convergence of PageRank).

Let ρ ∈ C2,α(Td), b ∈ C2,α(Td;Rd) and v ∈ C1,α(Td) for

any α ∈ (0, 1). Assume that γε ≤ 1, γh ∈ (0, 1), and

η < 1. Let un be the solution to the PageRank problem

(1) and let u ∈ C3(Td) be the solution to the PDE (2).

Then there exists C1, C2, c1, c2 > 0 with C1 depending on

γh > 0, such that when ε+ h ≤ c1(1− ηγε) we have that

max
x∈Xn

|u(x)− un(x)| ≤ C1(1− ηγε)−1(λ+ ε+ h)

holds with probability at least 1−C2n exp(−c2nhd+2λ2)−
C2n exp

(
−c2nhd+2(1− ηγε)2

)
, where λ ∈ (0, 1].

Our proof of Theorem 1 first uses a Bernstein type

concentration inequality to establish consistency of the

PageRank vector and then uses a maximum principle

argument to establish convergence.

The continuum PDE (2) has reaction, advection, and

diffusion terms. The two reaction terms, u and ρ−1v, are

due to the teleportation step in PageRank. The advection

term, div (ρ2bu), describes the advection of the quantity

ρ2u along the vector field b, and is due to the directional

preference in the definition of the weights in a random

directed geometric graph. Finally, the weighted diffusion

term, div (ρ2∇u), represents diffusion from the random

walk step of PageRank.

Theorem 1 is stated as a finite sample size result, where

n, ε, h, α, and λ are fixed. If we consider the continuum

limit as n→∞ and εn, hn, αn, λn → 0, then Theorem 1

tells us how to relatively scale the parameters. We assume

εn ≤ αn and h2
n ≤ αn, so that γεn , γhn ≤ 1. To ensure the

continuum limit holds with probability one, we require

lim
n→∞

nhd+2
n λ2

n

log n
=∞, (3)

which is a standard scaling for pointwise consistency of

graph Laplacians. In this case, we have convergence rate

of O(λn + εn + hn) in Theorem 1 with probability one.

A corollary of Theorem 1 is the asymptotic Lipschitz

regularity of the PageRank vector [7, Corollary 2.12],

which shows that the PageRank vector does not vary

much between vertices.

When γh = 0 or γh > 0 is small, the continuum PDE

(2) is approximated by the first order equation

u+ γερ
−2div (ρ2bu) = ρ−1v on Td. (4)

In this case, an analogous result to Theorem 1 shows that

the solution to the PageRank problem (1) converges to the

viscosity solution of the PDE (4); see [7, Theorem 2.5].

Finally, using the same techniques, we also obtain the

convergence of the probability distribution for the random

walk to the solution of a particular reaction-advection-

diffusion equation; see [7, Theorem 2.14].
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