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Summary

A typical graph neural network (GNN) pipeline assumes

that node labels are conditionally independent given their

neighborhoods. However, this assumption is far from true

in many real-world datasets. We address this problem

with an interpretable and efficient framework that can

improve any graph neural network architecture simply by

exploiting correlation structure in the regression residuals.

Correlated Graph Neural Networks

In many graphs, nodes have attributes; for example, an

online social network may have information on a person’s

location, gender, and interests. Semi-supervised prediction

problems on graphs combine the graph topology and node

attributes with some labels on a subset of nodes to make

predictions for nodes where such labels are missing. For

example, in online social networks, we may have the age

of some users from registration or survey data and want to

infer the age of other users for better targeted advertising.

Graph neural networks (GNNs) are a successful class of

methods for such tasks [1]. The basic idea of GNNs is to

first encode the local environment of each node i into a

vector representation hi by aggregating its own features

along with the features of its neighbors. The outcome of

each node is predicted independently as a function of the

vector representation. More formally,

hi = f (xi, {xj : j ∈ NK(i)}, θ) ; ŷi = g(hi, θ), (1)

where xi is a feature vector for node i and NK(i) is the K-

hop neighborhood of i (K = 2 in practice). In regression,

the training error is usually measured with a squared-error

loss
∑

i∈L(ŷi − yi)2 on the set L of labeled nodes.

However, a fundamental limitation of GNNs is that

they predict each outcome independently given the repre-

sentations and ignore outcome correlation of neighboring

nodes. Figure 1 shows an example illustrating why this

is problematic using a graph with topological and feature

symmetry but monotonically varying node labels. The

GNN fails to distinguish nodes v2 and v4 (Fig. 1(b)) and

therefore cannot predict them both correctly. On the

Figure 1: Limitations of GNN regression and our pro-

posed fix. The node labels decrease from v1 (+1.0) to

v6 (−1.0), and most interior nodes have positive-valued

labels. (a) Each node’s degree is used as its feature.

Nodes are colored based on their labels. The training

nodes are v1, v3, v4, v6. (b) The GNN encodes nodes

by vectors hi, which are used independently for label

prediction.st The GNN captures the positive trend

for interior nodes but fails to distinguish v1, v2, v3 from

v6, v5, v4 due to symmetry. (c) GNN regression resid-

uals for the training nodes. (d) Our Correlated GNN

method estimates the residuals on testing nodes v2, v5.

(e) The estimated residuals are added to GNN out-

puts as our final predictions, yielding good estimates.

other hand, traditional graph-based semi-supervised learn-

ing algorithms such as those based on label propagation

(LP) [3], work very well in this case as the labels vary

smoothly over the graph.

In Figure 1, node features are somewhat — but not

overwhelmingly — predictive. We propose Correlated

Graph Neural Networks (C-GNNs) to take advantage of

outcome correlation to improve prediction performance.

A C-GNN uses a GNN as a base regressor to capture the

(possibly mild) outcome dependency on node features and

then further models the regression residuals on all nodes.

Model. Following standard statistical arguments com-

mon for ordinary least squares, the typical loss for a GNN

1



in the regression setting is equivalent to maximizing the

likelihood of a fully factorized joint distribution of labels,

where each label distribution conditioned on the node

representation is a univariate Gaussian:

p(y | G) =
∏

i∈V p(yi | hi); yi | hi ∼ N (ŷi, σ
2) (2)

Consequently, the residuals ri = ŷi − yi are implicitly

assumed to be independent with mean zero. There’s no a

priori reason to assume independence, and we observe that

errors tend to be correlated in real-world data. We choose

a simple multivariate Gaussian to model the correlation:

y ∼ N
(
ŷ,Γ−1

)
⇐⇒ r ≡ y − ŷ ∼ N

(
0,Γ−1

)
, (3)

where Γ = Σ−1 is the inverse covariance (or precision)

matrix, and r is the residual of GNN regression. We

parameterize the precision matrix in a simple way that

(i) uses the graph topology and (ii) turns out to be com-

putationally tractable: Γ = β(I − αS), where S is the

normalized adjacency matrix. Here, β controls the overall

magnitude of the residual and α reflects the strength and

direction of the correlation. To be valid, Γ must be positive

definite, which is true for −1 < α < 1 and β > 0. When

α = 0, the model reduces to the standard GNN regression.

When α→ 1, Γ is the normalized Laplacian, and the noise

is assumed to be smooth over the entire graph, which is

the standard assumption in classical methods [3].

Given observed outcomes yL on labeled nodes L, the

precision matrix parameters α and β as well as the GNN

weights θ are learned by maximizing the marginal likeli-

hood. Computational cost is a major concern with this

approach. Standard factorization-based algorithms for

computing the matrix inverse and log determinant in the

likelihood function and its derivatives scale cubicly in the

number of nodes, which is prohibitive for graphs beyond

a few thousand nodes. We show how to reduce these com-

putations to linear in the number of edges, using recent

tricks in stochastic trace estimation [2].

At inference time, our model predicts the outcomes on

the unlabeled nodes U by maximizing their probability

conditioned on the labeled nodes L. If we partition Eq. 3

into the labeled and unlabeled blocks,[
yL

yU

]
∼ N

[ŷL

ŷU

]
,

[
ΓLL ΓLU

ΓUL ΓUU

]−1 . (4)

Conditioning on the labeled nodes L, the outcome distri-

Figure 2: Prediction accuracy for county-level median

household incomes in an election map network as a

function of the number of included features.

bution on U is also a multivariate Gaussian:

yU | yL ∼ N
(
ŷU − Γ−1UUΓULrL,Γ

−1
UU

)
. (5)

Our model uses the expectation of this conditional distribu-

tion as the final prediction: yC−GNN
U = ŷU − Γ−1UUΓULrL.

Importantly, our approach makes no assumption on

the GNN architecture, as the error modeling “sits on top”

of the base regressor. One does not even have to use a

GNN — under a linear model, our framework is performing

generalized least squares. However, we find that GNNs

indeed work well as base regressors for graph-based data.

Preview of results. We test our model on real-world

datasets, including to predict demographics in U.S. elec-

tion maps, traffic in road networks, and view counts in an

online game streaming social network. Our model provides

substantial improvements: a mean 14% improvement in

R2 over base GNNs across 10 datasets. One finding is that

accounting for outcome correlation is most useful when

features are only mildly predictive (Figure 2).

We also consider inductive learning : a model is trained

on one graph where labels are available and deployed on

another where labels are difficult to obtain. With a small

fraction of labels on the new graph, the accuracy of a

C-GNN can be even better than the transductive accuracy

of a GNN. For example, we train a C-GNN to predict

county-level unemployment rates with 60% labeled nodes

using 2012 data. Using 10% of labels from 2016 data, the

C-GNN has 0.65 test R2, which is even more accurate than

a GNN trained directly on 60% of 2016 labels (R2 = 0.53).
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