
MEASURING RESILIENCE OF SOCIAL ORGANIZATIONS USING ENTROPY—A TEMPORAL

CASE-STUDY FROM OPEN SOURCE SOFTWARE DEVELOPMENT

Christian Zingg, Giona Casiraghi, Frank Schweitzer

SIAM Workshop on Network Science 2020
July 9–10 · Toronto

Summary

Members of social organizations such as communities of

software developers can mitigate challenging situations by

interacting with their peers. We introduce a measure to

track the extent to which the interactions between the

members are constrained. In a case study on different

Open Source developer communities, our measure repro-

duces shocks such as the sudden leave of a core-developer.

Teams of Open Source Software Developers

Social organizations are ubiquitous in our everyday life,

ranging from the project team we are working in to the

special interest group we are contributing to, online. For

our study, we focus on communities of software developers

from Open Source Software projects such as the Gentoo

Linux operating system, or the igraph programming li-

brary. The developers in such a community collaborate

with the goal to develop and maintain their particular

Open Source Software.

In order to survive, these communities have to mitigate

issues such as software malfunctions, or losses of key-

developers. To solve these issues, the developers can

interact with their peers, for example, to distribute tasks,

to discuss possible solutions, to write code together, etc.

We argue that the more ways there are in which different

developers can interact, the broader is the repertoire of

possible solutions the community can come up with.

However, how the developers interact, is subject to

constraints. For example, if two developers have to interact

often to develop a particular software component together,

they have less time available to interact with other peers.

Our aim is to develop a method to assess how strongly

the interactions among all developers in a community are

restricted by such constraints.

Measuring Diversity in Interaction Preferences

The key element of our method is a measure of the poten-

tiality of the organization [4]. This expresses the ability

to recover from any kind of perturbation, or shock, that

the organization experiences (individuals leaving, interac-

tions interrupted, etc.). To calculate the potentiality, we

use a representation of the organization as an ensemble

of networks. In these networks, the developers corre-

spond to nodes, and their interactions to edges. Suppose

that at time t we observe a network gt. In principle, we

can treat gt as a random realization, sampled from the

set of all possible configurations of the organization that

could have been observed under the constraints given. The

lower the number of configurations, or the more similar

the possible configurations, the lower the potentiality of

the organization, because fewer options are available for

the system to operate. The higher the number of possible

configurations and the more diverse they are, the higher

the potential of the organization to recover from a shock

or to mitigate an issue, as more and more alternative ways

of interacting are available for its members.

By appropriately fitting a generalised hypergeometric

ensemble of random graphs (gHypEG) [1] to the observed

interactions, we study the probability distribution of the

possible configurations of the system. We thus estimate

potentiality in terms of the probability distribution un-

derlying the ensemble. A system has high potentiality

if the distribution is broad and possible configurations

are heterogeneous, and low potentiality if the distribution

is narrow and possible configurations tend to be homo-

geneous. By computing the Shannon entropy of the

gHypEG, we quantify precisely this property. Thus, the

potentiality of a social organization is the Shannon entropy

of the network ensemble characterizing the current state

of the system.

From Interaction Data to Networks

Open Source developers leave traces of their interactions

online, in issue trackers, in code repositories, or also in

mailing lists. Here we focus on two sources of interac-

tions, depending on which is available for a particular

community.

The first source of interactions are code-repositories,

1



Figure 1: Evolution of potentiality in the Gentoo Linux developer community.

from which code-editing interactions can be extracted

with the Python library git2net [2]. Such a code-editing

interaction occurs when one developer changes existing

code written by another developer. These interactions

indicate that the editing developer gains knowledge about

a functionality introduced by the edited developer. Now,

to mitigate issues arising in this code, also the editing

developer has knowledge to collaborate on possible solu-

tions.

The second source of interactions are issue-trackers,

which are online forums where the developers discuss how

to fix a particular bug. This type of interaction reflects

awareness of the other developers and their ideas on how

to fix bugs. Hence, to fix a new bug, a developer interact-

ing with many peers has access to a broader selection of

feedback.

From either source, we can construct a network based on

the interactions occurring in a specific time-interval. By

sliding this time-interval through the observation period

of the respective community, we can construct a time-

series of networks to characterize the dynamics of the

interactions between the developers. From this time-series

of networks we compute a corresponding time-series of

potentiality of the organization.

Case Studies

In a case study, we compute the changes in potentiality

over time for 5 different Open Source Software commu-

nities: Gentoo Linux, igraph, FFmpeg, libav, and the

Linux Kernel. For this extended abstract we focus on the

Gentoo Linux software developer community and interac-

tion data from its issue-tracker. By interviewing Gentoo

developers, the authors of [3] found that this community

exhibited a threatening evolution between the years 2004

and 2008. They found that in this period a particular

developer in the organization, Alice, became the main

responsible developer for distributing incoming tasks to

the rest of the community. I.e., the other developers de-

veloped a tendency to receive tasks from Alice instead of

acting on their own. Then, in March 2008, Alice left the

community abruptly after an internal dispute, and the

other developers had to handle the task distribution again

among themselves.

Potentiality identifies this trend: It decreases between

the years 2004 and 2008, when Alice distributed a large

part of the tasks. Then, in 2008, it increases almost

instantaneously again, when Alice left. The evolution of

potentiality is displayed in Figure 1, with a red background

highlighting the period when Alice was a member of the

community.

References

[1] G. Casiraghi and V. Nanumyan. Generalised hypergeometric
ensembles of random graphs: The configuration model as an
urn problem. arXiv:1810.06495, 2018.

[2] C. Gote, I. Scholtes, and F. Schweitzer. Git2net: Mining time-
stamped co-editing networks from large git repositories. In
Proceedings of the 16th International Conference on Mining
Software Repositories, MSR ’19, page 433–444. IEEE Press,
2019.

[3] M. S. Zanetti, I. Scholtes, C. J. Tessone, and F. Schweitzer.
The rise and fall of a central contributor: Dynamics of social
organization and performance in the gentoo community. In
CHASE/ICSE ’13 Proceedings of the 6th International Work-
shop on Cooperative and Human Aspects of Software Engineer-
ing, pages 49–56, 2013.

[4] C. Zingg, G. Casiraghi, G. Vaccario, and F. Schweitzer. What
is the entropy of a social organization? Entropy, 901(21), May
2019.

2


