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Summary

We propose and analyse a general tensor-based frame-

work for incorporating second order features into spectral

network measures. This approach allows us to combine

traditional pairwise links with information that records

whether triples of nodes are involved in triangles. Our

treatment covers classical spectral methods and recently

proposed cases from the literature that incorporate sim-

plex information. We also identify interesting extensions.

In particular, we define a mutually-reinforcing (spectral)

version of the classical clustering coefficient, where trian-

gles are deemed to be important if they intersect with

other important triangles. The underlying object of study

is a constrained nonlinear eigenvalue problem associated

with a cubic tensor. Using recent results from nonlin-

ear Perron–Frobenius theory, we establish existence and

uniqueness under mild conditions, and show that the new

spectral measures can be computed efficiently and robustly

with a nonlinear power method.

Background and Motivation

Network science is grounded in the concepts of nodes

and edges. In particular, the adjacency matrix efficiently

encodes the topology of a graph and is easily manipu-

lated using linear algebraic techniques. Here, if there

are n nodes, A ∈ Rn×n and Aij = 1 if nodes i and j

are connected, with Aij = 0 otherwise. We assume that

the connections are undirected, so Aij = Aji. This net-

work representation is at the heart of many centrality

and clustering algorithms [8]. We motivate our work with

eigenvector centrality, which quantifies the importance of

node i by yi, where y ∈ Rn is the Perron eigenvector of

A [5, 14]:

yi ∝
n∑

j=1

Aijyj , y ≥ 0.

This centrality measure was popularized in the social

network literature in the 1970s, [5], but can be traced

back to algorithms proposed in the 1890s for ranking

players involved in chess tournaments [14]. Eigenvector

centrality is mutually reinforcing, in the sense that the

importance of node i is proportional to the importance

of its neighbours. We note that the concept of mutual

reinforcement is also at the heart of Google’s PageRank

measure [12].

It is becoming apparent, however, that many impor-

tant network features arise from the interaction of larger

groups of nodes [2, 11, 13]. Information on higher-order

interactions among nodes is indirectly used in many net-

work science algorithms by considering traversals around

the network. However, recent work [2, 3, 4, 7, 11] has

shown that there is benefit in directly taking this informa-

tion into account when designing algorithms. In this talk

we discuss a general tensor-based framework for incorpo-

rating second-order features, i.e., triangles, into network

measures [1].

Nonlinear Eigenvalue Framework

Our object of study is a new constrained nonlinear eigen-

value problem associated with a cubic tensor T :

αAx + (1− α)T p(x) = λx, x ≥ 0, (1)

where α ∈ [0, 1] and

T p(x)i =

n∑
j,k=1

T ijk

(
|xj |p + |xk|p

2

)1/p

. (2)

For example, we may introduce the binary triangle ten-

sor, where T ijk = 1 if nodes i, j, k form a triangle and

T ijk = 0 otherwise. In this new measure, a node inherits

extra importance from sharing triangles with nodes that

themselves take part in important triangles.

We note that the power mean parameter p in (2) allows

us to move, for example, between max{|xj |, |xj |}, given by

the limit p→∞, and the geometric mean,
√
|xixj | given

by the limit p→ 0. The parameter α interpolates between

traditional edge-based eigenvector centrality, α = 1, and

a purely second-order version, α = 0.

A novel mutually-reinforcing (spectral) version of the

classical Watts-Strogatz clustering coefficient [15] arises

when we take α = 1 in and set T ijk = 1/(di(di − 1)) if

nodes i, j, k form a triangle and T ijk = 0 otherwise, where

di denotes the degree of node i.
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Theoretical and Experimental Results

Using recent advances in nonlinear Perron–Frobenius the-

ory [9], we are able to establish existence of a unique

solution x to (1) under mild conditions on the network

topology. Moreover, these new spectral measures can be

computed efficiently and robustly using a nonlinear power

method. Just as for the standard power method, (a) the

iteration is guaranteed to converge from any positive start-

ing vector, (b) the convergence rate is linear, and (c) the

main computational cost at each iteration is a matrix-

vector multiplication with A, and hence the method is

well-suited to the large-scale sparse networks arising in

many applications.

To illustrate the type of computational result that will

be presented in the talk, Figure 1 shows a box and whiskers

plot for the ratio of link prediction success with and with-

out second order information. Here, we used a seeded

PageRank algorithm [10, 16] on a citation network with

233 nodes and 994 edges. We repeatedly removed 10% of

the edges at random for the algorithms to predict. The

prevalence of ratios larger than one indicates that the use

of second order information is beneficial.

Figure 1: Box and whisker plot showing median, and 25th

and 75th percentiles, for the ratio of success in predicting

randomly removed edges with and without second order

information. Here, success is measured by the number

of correct entries among the predicted top 10%. Ratios

greater than one indicate that second order information

is beneficial. We used p = 0 in (2) and show results for

various α in (1).
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