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Summary

In this presentation, we discuss reaction-diffusion mod-

els for predator-prey dynamics in patch-structured pop-

ulations with between-patch dispersal takes place on a

network. Using graphons (or graph limits), we derive a

continuum analogue of patch reaction-diffusion models

describing the role of dispersal with non-local connectiv-

ity schemes like small-world or power law networks. We

show that the threshold diffusivity needed for the onset

of Turing pattern formation in terms of eigenvalues of

the dispersal kernel, so the metapopulation dynamics are

intricately linked to the topology of the dispersal network.

Background

Spatially-explicit modeling plays an important role in un-

derstanding ecological dynamics, Reaction-diffusion mod-

els on discrete patches have a long history in the ecology

literature. A continuum model with a local diffusion oper-

ator was introduced by Segel and Jackson, demonstrating

Turing instability in predator-prey models with dispersal

[6]. Of particular interest is the question of bistability of

patterned and uniform states, which was demonstrated in

a two-patch model by Segel and Levin [3, 7].

Model

Segel and Levin studied a patch model for predator-prey

dynamics with diffusion along an arbitrary network with

adjacency matrix Wij connecting the patches.

dVi(t)

dt
= Vi(t) (α− βEi(t)− γVi(t)) (1a)

+DV

N∑
i=1

Wij [Vj(t)− Vi(t)]

dEi(t)

dt
= Ei(t) (−δ + ηVi(t)− θEi(t)) (1b)

+DE

N∑
i=1

Wij [Ej(t)− Ei(t)]

where Ei and Vi are the predator and prey density at

patch i, β and θ can either be positive (self-inhibition)

or negative (self-activation / Allee effect), and the other

parameters are non-negative.

We now consider a continuum analogue of this reaction-

diffusion system, with patches indexed by x ∈ [0, 1]. Fol-

lowing the approach of Medvedev [4, 5], Kuehn and Throm

[2] and Bellière [1], we introduce W (x, y) as the adjacency

function for our graphon describing connectivity between

any pair of patches x and y.

∂V (x, t)

∂t
= V (x, t) (α− βE(x, t)− γV (x, t)) (2a)

+DV

∫ 1

0

W (x, y) [V (y, t)− V (x, t)] dy

∂E(x, t)

∂t
= E(x, t) (−δ + ηV (x, t)− θE(x, t)) (2b)

+DE

∫ 1

0

W (x, y) [E(y, t)− E(x, t)] dy

where E(x, t) and V (x, t) represent the densities of the

predator and prey and we name the non-local opera-

tor ∆Wu(x) =
∫ 1

0
W (x, y) (u(y)− u(x)) dy the graphon

Laplacian as it serves as the diffusion operator for dispersal

along the graphon.

If the adjacency function depends only on the difference

in location W (x, y) = J(y − x), then the eigenvalues of

the graphon Laplacian can be written as

λkW = Ĵk − Ĵ0 (3)

where f̂ is the Fourier transform of f for wavenumber k.

Small-World Graphons

We consider the Small-World graphon considered in recent

coupled oscillator models [5, 4, 2]. This model assumes

a radius r of near neighbors and a rewiring parameter p,

resulting in an adjacency function of

W (x, y) =

{
1− p : d(|x− y|) ≤ r
p : d(|x− y|) > r

The small-world graphon Laplacian has negative eigenval-

ues given by the formula

λkW =

(
1− 2p

πk

)
sin (2πkr)− 2r − p+ 4rp
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Figure 1: Largest magnitude eigenvalue of small-world

graphon Laplacian for various r and p.

Spatially-Uniform Steady State

To understand the spatial dynamics of the predator-prey

system, we first consider the spatially-uniform steady state

solution correspond to steady state solutions of the reac-

tion terms

V (x, t) ≡ V =
αθ + δγ

βθ + ηγ
, E(x, t) ≡ E =

αη − βδ
βθ + ηγ

If β, θ > 0, we use a Lyapunov functional to show that uni-

form steady state is globally stable, so pattern formation

is impossible in the absence of an Allee effect.

Turing Instability

If there is an Allee effect in one species but not the other,

we can use a linearized stability analysis to show instability

of the uniform steady state when(
DV λ

k
W − βV

) (
DEλ

k
W − θE

)
+ ηγEV < 0

If β < 0 and DV = 0, this condition becomes

DE >
(βθ + ηγ)E

βmink{λkW }

We have learned that we need sufficient dispersal rate

of predators to cause pattern formation, and that this

threshold depends on the graphon connectivity through

the eigenvalues of W (x, y).

Weakly Nonlinear Stability Analysis

To consider the stability of patterns near the Turing insta-

bility threshold, we can use a perturbation expansion to

Figure 2: Type of pattern forming bifurcation predicted

by Equation 4 for given r and p: forward (blue), backward

(red), or none (black).

derive a Stuart-Landau equation for the amplitude A(T )

of the pattern-forming solution

dA(T )

dT
= BA(T ) + CA(T )3 (4)

For the Small-World graphon, we use this to classify

whether the Turing instability arises as a forward (su-

percritical) or backward (subcritical) pitchfork bifurcation

for different values of r and p.
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