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Summary

Structural rounding is a framework developed for design-

ing polynomial-time approximation algorithms on graphs

close to a structural class [3]. Structural rounding works

by editing the original graph into a well-structured class,

solving the specified problem on the edited graph, and

then lifting the solution to the original graph. This allows

us to expand the scope of class-specific approximation

algorithms to all graphs ‘close’ to that class without sacri-

ficing approximation guarantees. Recent work established

that structural rounding is both practical and effective in

a limited setting [6], however several key barriers remain

to making the framework broadly applicable in real-world

network analysis.

Motivation

Real-world networks are inherently noisy due to many

factors, some of which include measurement error, un-

certainty, or variations from an underlying model. This

additional noise makes running structure-based algorithms

infeasible and often hinders approximation quality in al-

gorithms that rely on greedy choices. Fortunately, there

is evidence [7, 4] that many real-world networks are noisy

representations of intrinsically structured data. Specifi-

cally, these networks can be transformed into a graph from

a structural class via a short sequence of edit operations

(e.g., vertex/edge deletion or edge contraction). Structural

rounding [3] guarantees polynomial-time approximation

algorithms in exactly this setting; further, in contrast to

prior work [7, 2, 1], the approximation guarantees are

relative to the optimal solution on the (noisy) original

network not the edited graph.

Recent work applied the structural rounding frame-

work to solve Vertex Cover in near-bipartite graphs [6],

including a Python implementation. This work empiri-

cally established that algorithms from the framework can

achieve both practical runtimes and high-quality solu-

tions, competitive even with heavily-adopted heuristics,

while maintaining approximation guarantees. While this

illustrated the promise of structural rounding, in order

for it to become a reliable tool in the network science

toolkit, we must demonstrate scalability and practicality

for additional problems and classes.

Structural Rounding Framework

The framework consists of three steps: first, edit the input

graph into the desired class, then solve the optimization

problem using an existing class-specific algorithm, and

finally lift the partial solution from the edited instance to

a solution on the original graph. See Figure 1.

To be specific, we define a graph G to be γ − close

to a specified structural class C, under edit operation ψ,

if the graph G′ ∈ C can be obtained from G via some

sequence of k ≤ γ edits of type ψ. An algorithm for

(Cλ, ψ) − Edit, where λ is the class parameter, gives a

(bicriteria) (α, β)− approximation if the number of edits

is guaranteed to be at most α times the optimal number

of edits into the class Cλ and the edited graph G′ is in

the class Cβλ. For a problem Π to be amenable to the

structural rounding framework, it must simultaneously

satisfy two properties– stability and structural liftability.

Structural rounding supports both minimization and max-

imization problems–we outline the minimization case here.

A minimization problem Π is stable under edit operation

ψ with constant c′ if OPT (G′) ≤ OPT (G) + c′γ. Addi-

tionally, a (minimization) problem Π can be structurally

lifted with respect to ψ with constant c if given a solution

S′ to Π on G′, a solution S to Π on G can be found in

polynomial time such that CostΠ(S) ≤ CostΠ(S′) + ck.

When the class C has a ρ-approximation algorithm for Π

and γ ≤ δOPTΠ, where δ = δ(ε, α) > 0, structural round-

ing results in a ((1 + c′αδ) · ρ(βλ) + cαδ)-approximation

for Π on graphs γ-close to Cλ (Theorem 4.1 in [3]).

Many common graph optimization problems satisfy

the conditions of structural rounding, including Vertex

Cover, Feedback Vertex Set, Independent Set,

Minimum Maximal Matching, Chromatic Number,

Dominating Set, and Max-Cut. While the framework

is agnostic to the choice of graph class C, many well-

studied classes (e.g. bounded degeneracy, bounded genus,
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Figure 1: Illustration of applying structural rounding to solve Vertex Cover by editing to bounded treewidth. In

step 1, we edit to treewidth 1 (a forest), marking deleted vertices in red. In step 2, we solve vertex cover on the edited

graph, marking nodes in our solution with green. Finally, in step 3, we lift our partial solution to the original graph,

marking the full vertex cover with green.

and bounded treewidth) are promising targets due to a rich

body of exact and high-quality approximation algorithms

for graphs in the class.

Applicability

A recent C++ implementation1 of [6] has increased the

runtime performance significantly. Initial experiments

show that the C++ implementation runs approximately

10 times faster than the Python version. This performance

increase ensures that structural rounding can efficiently

deliver high-quality solutions backed by theoretical guar-

antees at scale, easily handling graphs with more than 200

million edges.

While finding a class with efficient approximation algo-

rithms may be easy, editing into that class is often hard

(e.g. the best-known approximation for editing to planar is

polylogarithmic [5]). Because of the strong dependence of

the structural rounding approximation factor on the num-

ber of edits, this creates a worrisome barrier for networks

near many natural classes.

Therefore, in this work, we examine potential exten-

sions to the structural rounding framework which would

accommodate the difficulty of editing to specific classes.

For example, the current approach requires editing algo-

1Code available at https://github.com/TheoryInPractice/structural-

rounding

rithms to be problem-agnostic; could it be adapted to

allow problem-specific editing strategies that provided

guarantees on minimizing the change in optimal solution

value? Alternatively, is an approximation on the max-

imal subgraph from a class sufficient? If so, are these

algorithms easier to design and implement?
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