
EMERGENT COHERENT BEHAVIOR IN NEURAL NETWORKS

James MacLaurin (NJIT)

SIAM Workshop on Network Science 2020
July 9–10 · Toronto

This talk studies how macroscopic spontaneous

brain activity arises out of neural networks. It fo-

cusses on understanding how coherent oscillatory neu-

ral activity can arise spontaneously throughout the

network through stochasticity in the transmission of

information between neurons being filtered by the

nonlinear neuronal dynamics.

It has long been known that in the absence of

sensory stimulus, the brain spontaneously switches

between periods of asynchronous quiescent ‘DOWN’

states, and active ‘UP’ states. These transitions have

been observed in a variety of systems and conditions:

including the primary visual cortex of anesthetized

animals, during slow-wave sleep, and in cortical slices

from mice. There have been two not-necessarily-

incompatible proposed explanations for this switching:

slow adaptation variables gradually altering the net-

work state until a large jump occurs, or stochastic

switching between bistable network states. It is known

that the transitions tend to occur synchronously, and

that the UP state often demonstrates synchronization

that may attenuate in time.

Resting-state brain dynamics exhibits spontaneous

bursting oscillations at a range of frequencies, par-

ticularly in the alpha frequency range of 8 − 10Hz.

The amplitude and duration of these oscillations are

typically not fixed, but vary in a seemingly stochastic

manner. Indeed evidence from EEG recordings sug-

gests multistability: the low amplitude alpha rhythm

can be characterized as diffusion about a fixed point,

and the high amplitude alpha rhythm as a limit cycle.

The variation in amplitude and duration of these os-

cillations can be seen through the fact that they are

often distributed according to a power law.

Brain networks are distinguished by the complexity

of the dynamics by which neurons communicate with

each other. Briefly, the presynaptic neuron fires a

pulse of electrical activity down its axon, which then

passes through a synaptic cleft, and continues down

the dendrites of the post-synaptic neuron. Crucially,

the transmission of the spike through the synaptic

cleft can be extremely noisy - basically due to the low

copy numbers of the vesicles involved in the trans-

mission process. Secondly, the transmission of infor-

mation is not instantaneous, but is delayed through

the relatively slow response of some aspects of the

synaptic transmission. This slow response is often

thought to be fundamental to the emergence of coher-

ent network-wide oscillations, such as the well-known

Gamma rhythm.

In most studies of dynamical systems on networks,

the dynamics lies on the nodes, and the connections

are merely a means for the nodes to instantaneously

communicate with each other. By contrast, in the

network to be analyzed in this talk, there is complex

dynamics on both the nodes and the connections. The

fundamental aim is to understand how this complex

connection dynamics can shape emergent coherent

oscillations in the entire network.

Model Construction

In the model, there is dynamics on both of the nodes

and the connections.

• The neurons (i.e. the nodes in the network) are

indexed by numbers between 1 and 5N .

• Neurons with indices between 1 and 4N are stip-

ulated to be excitatory, and neurons with indices

between 4N + 1 and 5N are chosen to be in-

hibitory.

• Connections between neurons are directed, and

sampled randomly from a fixed probability dis-

tribution.

• The internal dynamics of each neuron is excitable

and governed by the Fitzhugh-Nagumo equation.

• Constants {AN
ab}a,b∈{e,i} dictate the efficacy of

the synaptic inputs: varying according to whether

the neurons are excitatory or inhibitory, and the

total number of neurons N .
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• The inputted current from presynaptic neuron k

to postsynaptic j is given by gjk(t).

d

dt
Xj(t) = G

(
Xj(t)

)
+H

( ∑
k∈Ej

AN
abg

jk(t)
)
, (1)

whereis the inputted current from neuron k, and the

constants. The synaptic dynamics (on the connec-

tions) is modeled as

d

dt
gjk(t) = − 1

τ
(2)
ab

gjk(t) + hjk(t) (2)

hjk(t) = hjk(0)− 1

τ
(1)
ab

∫ t

0

hjk(s)ds+ Sjk(t), (3)

• The variable Sjk is defined to denote the number

of times neuron k successfully induced a post-

synaptic response in the dendrite of neuron j.

Sjk is taken to be a Z+-valued Poisson count-

ing process with a stipulated intensity function

λjk
(
Xk(t)

)
.

• The variables gjk, hjk model the delayed post-

synaptic response to the afferent inputs. It is

generally thought that the delays are essential to

emergent oscillations.

• Our reason for modeling the delays through intro-

ducing auxiliary variables, rather than an explicit

delayed equation, is that it yields Markovian dy-

namics. This greatly facilitates the analysis.

Analysis

The linearity of the post-synaptic response allows

one to separate the inhibitory and excitatory

connections and sum the net afferent input on

neuron j to be g̃je(t) = 1
4N

∑
k∈[1,4N ]∩Ej

gjk(t),

g̃je(t) = 1
N

∑
k∈[4N+1,5N ]∩Ej

gjk(t),

h̃je(t) = 1
4N

∑
k∈[1,4N ]∩Ej

hjk(t), h̃je(t) =
1
N

∑
k∈[4N+1,5N ] h

jk(t). The scaling factors of

N−1 and (4N)−1 have been inserted to ensure that

these converge to O(1) for large N . The central

aim is to understand the emergent dynamics of the

‘empirical processes’ µ̃i,t and µ̃e,t, i.e.

µ̃N
e,t =

1

4N

4N∑
j=1

δ(Xj(t),g̃j
i (t),g̃

j
e(t),h̃

j
i (t),h̃

j
e(t))

(4)

µ̃N
i,t =

1

N

5N∑
j=4N+1

δ(Xj(t),g̃j
i (t),g̃

j
e(t),h̃

j
i (t),h̃

j
e(t))

. (5)
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Figure 1: An example system illustrating the empirical

measure corresponding to a model for the visual cortex

The empirical process is a device used in statistical

mechanics to represent the collective behavior of the

entire network. One can think of it as a frequency

histogram, assigning mass of 1/N to each of the states

of the neurons in the network.

In the large N limit, the dynamics of the empirical

process converges towards that of a PDE. Many of

the coefficients in the PDE depend on integrals (over

space) of the solution to the PDE. This PDE is often

referred to as a population density. Next, a Large

Deviations Principle is derived, giving the asymptotic

probability (for large N - the number of neurons in the

system) of the system switching between the quiescent

DOWN state and the oscillatory UP state. It yields

a ‘rate function’: the minima of the rate function

indicates the most likely states of the system. The

‘shortest path’ between two minima (as dictated by the

rate function) indicate the path most likely followed

by the system as it transitions between the state.

Results

• The effects of synaptic depression and synaptic

facilitation on the spontaneous switching between

the different states is explored. Synaptic depres-

sion is a decrease in the probability of a particular

synapse transmitting signals, due to a lot of pre-

vious activity.

• The results are also applied to study orientation-

tuning patterns in the visual cortex.
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