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Summary

We characterize the information-theoretic relative perfor-

mance of Laplacian spectral embedding (LSE) and adja-

cency spectral embedding (ASE) for block assignment re-

covery in stochastic blockmodel graphs via Chernoff infor-

mation. We investigate the relationship between spectral

embedding performance and underlying network structure

(e.g., homogeneity, core-periphery, (un)balancedness) via

a comprehensive treatment of the two-block stochastic

blockmodel and the class of K-block models exhibiting

homogeneous balanced affinity structure. Our findings

support the claim that, for a particular notion of sparsity,

loosely speaking, “Laplacian spectral embedding favors

relatively sparse graphs, whereas adjacency spectral em-

bedding favors not-too-sparse graphs.” We also provide

evidence in support of the claim that “adjacency spectral

embedding favors core-periphery network structure.”

Background and Overview

Statistical inference on graphs often proceeds via spectral

methods involving low-dimensional embeddings of matrix-

valued graph representations, such as the graph Laplacian

or adjacency matrix. Within the statistics literature, sub-

stantial attention has been paid to the class of K-block

SBMs with positive-semidefinite block edge probability

matrix B ∈ (0, 1)K×K . This is due in part to the ex-

tensive study of the random dot product graph (RDPG)

model [2, 8], a latent position random graph model which

includes positive-semidefinite SBMs as a special case. No-

tably, it was recently shown that for the random dot

product graph model, both Laplacian spectral embedding

and adjacency spectral embedding behave approximately

as random samples from Gaussian mixture models [3, 7].

In tandem with these limit results, the concept of Cher-

noff information [4] was employed in [7] to demonstrate

that neither Laplacian nor adjacency spectral embedding

dominates the other for subsequent inference as a spectral

embedding method when the underlying inference task is

to recover vertices’ latent block assignments. In doing so,

the results in [7] clarify and complete the groundbreak-

ing work in [6] on normalization in spectral clustering by

demonstrating that, for certain blockmodel regimes, K-

means clustering is inferior to Gaussian mixture modeling

for spectral clustering.

Our work synthesizes recent advances in random graph

limit theory [5, 7] in order to extend existing, prelim-

inary Chernoff-based embedding analysis to provide a

detailed comparison of two popular spectral embedding

procedures. We undertake an extensive investigation of

network structure for stochastic blockmodel graphs by

considering sub-models exhibiting various functional re-

lationships, symmetries, and geometric properties within

the inherent parameter space consisting of block member-

ship probabilities and block edge probabilities. We depict

relative spectral embedding performance as a function of

the stochastic block model parameter space for a range of

sub-models exhibiting various forms of network structure

(e.g., homogeneous community structure, core-periphery

structure, (un)balanced block sizes).

Spectral embedding performance

We focus on the following two models which have gar-

nered widespread interest in the literature—see [1] and

the references therein.

1. The two-block SBM with B =
[
a b
b c

]
and π = (π1, 1−

π1)> where a, b, c, π1 ∈ (0, 1);

2. The K ≥ 2 block SBM exhibiting homogeneous bal-

anced affinity structure, i.e., Bij = a for all i = j,

Bij = b for all i 6= j, 0 < b < a < 1, and

π = ( 1
K , . . . ,

1
K )>.

Consider large n-vertex graphs from the K-block

stochastic blockmodel with symmetric block edge proba-

bility matrix B and block probability vector π exhibiting

block sizes nk = πkn for each k = 1, . . . ,K. Using the

concept of Chernoff information together with recent ad-

vances in random graph limit theory, we establish an
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Figure 1: Core-periphery network structure and embedding performance in the two-block stochastic blockmodel.

information-theoretic summary characteristic (ratio quan-

tity) ρ? ≡ ρ?(B,π) with the interpretation that the cases

ρ? > 1, ρ? < 1, and ρ? = 1 correspond to comparative

large-sample embedding performance summarized as ASE

> LSE, ASE < LSE, and ASE = LSE, respectively.

Core-periphery network structure

For the collection of two-block SBMs exhibiting core-

periphery structure with B ≡ B(a, b) as specified in the

above sub-captions, Figure 1(a) and Figure 1(b) show ρ?

evaluated over the parameter space a, b ∈ (0, 1) in the

balanced (block size) regime and in an unbalanced regime,

respectively. The empty diagonal depicts the Erdős–Rényi

model singularity when a = b.
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