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Abstract

A leading approach for studying biological, technological,

and social networks is to represent them by multiplex

networks in which different layers encode different types

of connections and/or interacting systems [4]. Exam-

ples include interconnected critical infrastructures such as

transportation systems, power grids, and water lines [3]

as well as multimodal social networks containing different

categories of social ties [5]. Here, we study diffusion pro-

cesses on multiplex networks that are allowed to contain

directed edges within and/or between layers. We develop

perturbation theory to understanding the effects of di-

rectedness in the multiplex setting, and our work extends

existing theories that are either restricted to undirected

multiplex networks [2, 7], or which allow directed edges

only within, but not between, layers [9].

Background Information

Our work is based on studying the eigenvalues and eigen-

vectors of Laplacian matrices, which are widely used to

study dynamics on networks [6,8] and also provide theoret-

ical foundations for many machine-learning algorithms [1].

We study a generalization of Laplacian matrices for multi-

plex networks called supra-Laplacians [7],

L(ω) = LL + ωLI, (1)

where LL represents an intralayer supra-Laplacian that

encodes connections within individual layers and LI rep-

resents an interlayer supra-Laplacian that encodes con-

nections between layers. Parameter ω ≥ 0 is a coupling

strength that tunes the relative diffusion rates within and

between layers. The supra-Laplacian of the individual

layers LL is given by

LL =

T⊕
t=1

L(t) =


L(1) 0 · · · 0

0 L(2) · · · 0
...

...
. . .

...

0 0 · · · L(T )

 , (2)

where each L(t) = D(t)−A(t) is an unnormalized Laplacian

matrix for layer t. That is, layer t has an adjacency matrix

A(t) ∈ RN×N and a diagonal matrix D(t) that encodes

the nodes’ intralayer degrees (i.e., degree for each node i

within each layer t). We focus on uniformly coupled layers

described by an interlayer Laplacian

LI = LI ⊗ I, (3)

where I is the identity matrix and LI = DI−AI is an inter-

layer Laplacian matrix (with DI and AI defined similarly

to DL and AL).

Our work builds on previous research [2,7] that analyzed

the behavior of the spectrum of supra-Laplacian matrices

using perturbation theory for the limits of strong and weak

coupling (i.e., large and small coupling strength ω). The

small and large coupling limits implement a type of time

scale separation in which diffusion is much more likely to

stay in the same layer (small ω) or it is much more likely to

switch layers (large ω). This work, however, was restricted

to undirected networks. Recently, [9] allowed for directed

edges within a layer, which led to a nonmonotonic response

in where there is an optimal coupling strength that is

marked by a peak in λ2, which is the second-smallest

eigenvalue of L(ω). This begs the question: What are

other effects of directness, such as those arising when the

edges between layers are directed?

Main results

Here, we extend this theory to characterize the eigen-

vectors and eigenvalues of supra-Laplacians for multiplex

networks with more general types of coupling between

layers. We extend existing research by developing theory

for multiplex networks in with directed coupling within

and/or between layers. This is a reasonable modeling

choice because for many interconnected systems, there

exists a significant asymmetry between their coupling. For

example, in the case of transportation, after a person trav-

els on an a flight between airports, they will travel by car

on a road with very high probability. In contrast, after

a person travels in a car, it is very unlikely that they fly

on a plane. Hence, appropriate modeling for diffusion on

transportation systems should allow asymmetry for the
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Figure 1: Multiplex networks with asymmetric cou-

pling between layers. We study a toy multiplex net-

work with T = 2 layers and N = 6 nodes that is identical

to the network studied in [2], except we now allow the

interlayer coupling to be asymmetric (i.e., directed) using

an asymmetry parameter δ ≥ 0. Here, δ = 0 recovers

undirected coupling, whereas δ → 1 implements purely

directed coupling.

coupling between network layers, and similar asymmetric

couplings are expected to arise in myriad network-science

applications ranging from brain networks to social net-

works.

Thus motivated, we study multiplex networks with di-

rected edges, and we employ singular perturbation theory

to rigorously characterize several asymptotic limits includ-

ing the limits of strong and weak coupling between layers

(similar to [2,7]), as well as a limit when the interlayer cou-

pling points in a single direction from one layer to another.

We observe new insights for how asymmetric interlayer

coupling fundamentally affects diffusion on multilayer net-

works. We study this phenomenon for synthetic networks

(e.g., Figure 1) as well as empirical network datasets such

as social networks and biological networks.
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