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Scaling laws provide a means by which to estimate

the asymptotic growth behavior of a quantity from finite

data. Well-known scaling relationships in other scientific

domains–such as the scaling of resting metabolic rate with

organismal mass [3] as well as that of city populations [1]–

have been used productively to identify general patterns

around which to build models and characterize deviations.

Because sufficient empirical network data has been lacking,

the manner in which real-world network structure scales

has remained unexplored. The discovery of empirical

scaling laws for statistical measures of network structure

would shed new light on how networks change as they

scale up and whether they exhibit “universal” behavior,

providing new tests and targets for mathematical models

of network structure.

Previously, network scaling has largely been studied

using random graphs and generative models–often using

the tools of statistical physics–whose accuracy in relation

to real-world scaling behaviors often remains untested on

a large scale. Despite their popularity, random graphs

with fixed edge density or degree distribution are known

to be unrealistic models in many contexts. They appear

to broadly reproduce the low mean geodesic path lengths

found in most networks, but generally fail to reproduce

high values of global clustering coefficient, a hallmark

of social networks [4]. A detailed, quantitative study of

network scaling behavior would provide a clearer under-

standing of how random graphs differ from real-world

networks across scales.

Here, we investigate the empirical scaling behavior of

mean geodesic distance, global clustering coefficient, and

degree assortativity as a function of network size, using

a structurally diverse corpus of 254 networks from the

Index of Complex Networks (ICON) [2], spanning four

scientific domains and six orders of magnitude in size

(Figure 1). First, we estimate an empirical scaling law

for each structural measure. Second, we characterize the

degree to which random graphs parameterized by edge

density or by a degree sequence can explain the observed

scaling behavior. Finally, we introduce a new random

graph model which generalizes the configuration model to

allow parameterized “edge localization” and show that this

model produces more realistic scaling than the standard

configuration model.

We find that empirical networks exhibit average shortest

path lengths that robustly scale like O(log n). However, we

also find that triangle densities generally scale like O(1/n),

even in social networks, a pattern that is broadly consistent

with random graph theory, indicating that degrees and

randomness alone appear to play a larger role in shaping

large-scale network patterns than previously recognized.

As networks scale up, we find that the residual scaling,

i.e., the scaling left unexplained by degree structure alone,

increases steadily, with notable differences between do-

mains. The residual scaling of clustering coefficient, in

particular, indicates that real-world networks exhibit more

edge “localization” than expected given degree sequence

alone, even in non-social networks. By parameterizing a

form of edge localization, we present one explanation for

the observed deviations, demonstrating improvement in

comparison to the other tested models. These insights

can help motivate the development of new classes of net-

work models which may more accurately represent the

structure of real-world systems for use as substrates for

modeling dynamical processes or as null models against

which to identify interesting structural patterns. Our

findings can provide context for comparisons of random

graphs to real-world networks and serve as quantitative

targets for network models–like the stochastic block model

and preferential attachment–across empirical domains.
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Figure 1: Scaling behaviors of mean geodesic distance L, degree assortativity r, and global clustering coefficient C as

a function of the number of nodes n for 254 empirical networks. Scaling behaviors are listed for the Social, Biological,

Technological, and Informational network domains. For each summary statistic and network domain, relationships

are presented for empirical data (solid black line), random graphs with fixed edge density (dashed gray line), fixed

degree structure (dotted gray line), and degree-assortative random networks (solid colored line). Relationships for

null models are determined taking the average value of the summary statistic over 20 samples for each empirical

network and calculating a least-squares regression over the null values. The value of q chosen for the degree-assortative

networks used in a given statistic-domain combination is the value that minimizes the slope of the residual scaling,

where residual scaling is defined as the scaling of the ratios of the statistic value of an empirical network and the

average value for the null model; higher q corresponds to greater localization of edges.
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