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Summary

We propose a stress test for evaluating graph models. This test
iteratively and repeatedly fits a model to itself, exaggerating
models’ implicit biases.

Graph Generators

Graph models extract meaningful features Θ from a graph G

and are commonly evaluated by generating a new graph G̃.
Early models, like the Erdös-Rényi and Watts-Strogatz models,
depend on preset parameters to define the model. More recent
approaches aim to learn Θ directly from G to generate G̃.

The Chung-Lu model, for example, generates G̃ by randomly
rewiring edges based on G’s degree sequence [2]. The Stochas-
tic Block Model (SBM) divides the graph G into blocks and
generates new graphs G̃ respecting the connectivity patterns
within and across blocks [4]. Graph grammars extract a list
of node or hyperedge replacement rules from G and generate
G̃ by applying these grammar rewriting rules [1, 7]. Recently,
graph neural network architectures have also gained popularity
for graph modeling. For example, Graph Variational Auto-
Encoders (GVAE) learn a latent node representation from G

and then sample a new graph G̃ from the latent space [5]. Net-
GAN learns a Generative Adversarial Network (GAN) on both
real and synthetic random walks over G and then builds G̃ from
a set of plausible random walks [3].

Each of these models has its advantages, but each model may
induce modeling biases that common evaluation metrics are
unable to demonstrate. In the present work, we describe the
Infinity Mirror Test to determine the robustness of various graph
models. We characterize the robustness of a graph generator by
its ability to repeatedly learn and regenerate the same model.
The infinity mirror test is designed to that end.

Infinity Mirror Test

Named after a common toy, which uses parallel mirrors to
produce infinitely-repeating reflections, this methodology trains
a modelM on an input graph G0 and generates a new graph
G̃ and repeats this process iteratively on G̃ for a total of k

generations, obtaining a sequence of graphs 〈G1, G2, · · · , Gk〉.
This process is illustrated in Figure 1.
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Figure 1: The idea behind the infinity mirror is to iteratively to
fit our modelM on Gi, use the fitted parameters Θi to generate
the next graph Gi+1, and repeat with Gi+1.

The infinity mirror methodology produces a sequence of
generated graphs, each graph prediction based on a model of
the previous prediction. Like repeatedly compressing a JPEG
image, we expect that graphs generated later in the sequence
will eventually degenerate. However, much can be learned
about hidden biases or assumptions in the model by examining
the sequence of graphs before degeneracy occurs.

We illustrate some initial results in Figure 2 using three
synthetic input graphs with easily-identifiable visual structure
G0 = {a 10 × 10 grid graph, a 25-node ring of 4-cliques,
and a synthetic graph with 3 well-defined communities}. We
consider the following graph modelsM = {Chung-Lu, degree-
corrected SBM (DC-SBM), Hyperedge Replacement Gram-
mars (HRG), Clustering-based Node Replacement Grammars
(CNRG), GVAE, and NetGAN}.

For each combination of input graph G0 and generative
modelM, we generate 50 independent chains of length k = 20

and compute the DELTACON score comparing G0 and Gk. We
select the chain resulting in the median DELTACON score, and
illustrate G1, G5, and G20 (i.e., the 1st, 5th, and 20th genera-
tions) in Figure 2 if they exist.

Main Results and Discussions

These initial results show that CNRG can capture and maintain
certain structures from the input graph: on the ring of cliques
we see perfect replication, as well as on the first generation of
community, with some marginal degradation as the number of
repetitions increases. SBM performs similarly-well on such
structured input. Neither model works particularly well on
grids; CNRG introduces triangles, while SBM creates nodes of
degree 1.
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Figure 2: (Best viewed in color.) Plot showing the evolution of various graph models at generations 1, 5, and 20 (G1, G5, G20)
on three types of synthetic graphs. Red × indicates model fit failure.

HRG fails entirely for grids and does not appear to perform
well on the other two graph types.

The Chung-Lu model mimics the degree distribution of the
input as we would expect, but fails to capture the network
structure. We can see long chains formed from the grid input by
the last generation, and the output of the other two graph types
do not resemble the original graph. We also see that Chung-Lu
fails to preserve the connectivity of the graph, as shown by the
disconnected components in the last generation of each column.

GraphVAE results in overly dense graphs regardless of the
input, which obfuscates any topological structure the input
graph had.

NetGAN tends to produce sparse, tree-like graphs. This
becomes a problem down the line. The way that NetGAN com-
putes its train/test/validation split relies on finding a spanning
tree on the input graph; when the model is recursively applied
to its increasingly tree-like outputs, it will eventually fail to find
a satisfactory split, causing the model to fail to fit.

The infinity mirror test we proposed exposes biases in models
that might otherwise go unnoticed. Future work will determine
how best to use this methodology to analyze biases and errors
in graph models.
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