
PARALLEL COMPUTATION OF FIXED POINTS ON NETWORKS OF NONLINEAR ODE

Christopher Brissette, Jianxi Gao, Malik Magdon-Ismail, and George Slota

SIAM Workshop on Network Science 2020
July 9–10 · Toronto

Summary

Fixed points of nonlinear network dynamics are important

for determining asymptotic behavior of many real world

dynamical systems. As network data becomes larger and

the ability to parallelize numerical methods continues to

define their scalability it consequently becomes necessary

to develop parallel methods for numerical integration of

network dynamics. We introduce a parallel algorithm for

numerically integrating homogeneous nonlinear ordinary

differential equations on networks.

Abstract

The problem of calculating fixed points of networks

running homogeneous ordinary differential equations is

broadly applicable to research including epidemic spread-

ing [7], gene regulatory dynamics [1], and ecological dy-

namics [6]. While parallel methods for numerically inte-

grating systems of ordinary differential equations exist

[2][3] they require finite time windows and are not ideal

for determining asymptotic fixed points. We introduce

the general form of the equations considered here on the

N -node graph G = (V,E), also considered in [4][5].

ẋk(t) = f(xk(t)) +
∑N

j=1
Akjg(xk(t), xj(t)) (1)

Here xk(t) is the state of node k at time step t, and Akj is

the k-jth entry of the network’s adjacency matrix. f(xk(t))

and g(xk(t), xj(t)) are non linear functions defined over

the states of nodes in the network.

Our implementation relies on a mean field approxi-

mation of the network dynamics given in [5] to initially

approximate long term behavior at the boundary of each

compute rank allowing the ranks to evolve towards a

steady state in parallel without the need for communica-

tion. Our method then uses multiple rounds of message

passing to improve the initial fixed point estimates from

each rank. We apply Euler’s method for our implemen-

tation and provide evidence that this method recovers

the true steady state of homogeneous network dynamics

given a sufficient number of message passing rounds. This

method entails applying an averaging operator over the

system to reduce the system of N equations to one. Then

the ambient network behavior outside of our considered

subset is approximated by the steady state of this reduced

system, which they refer to as xeff . The reduced system

takes the following form.

ẋ = f(x) + βg(x, x) (2)

Here β is the network resilience in the case of undirected

networks, and the initial value of x is the degree weighted

average of the initial node states on the network. We use

this approximation to decouple each rank in our system al-

lowing them to converge near their true serially computed

steady states. Computationally, for this we consider each

rank to be converged once two iterations are within some

L1 distance threshold ε of each other. While this initial

estimate is relatively accurate it can be drastically im-

proved by subsequently exchanging information between

ranks. The process of converging and passing information

is then repeated for increased accuracy.

Here we present accuracy results on two network test

suites of 20 networks each. The sizes of these networks

range between 100 and 2000 nodes. The networks consist

of 20 Erdos Renyi random graphs with probability of con-

nection p = 0.05 and 20 Barabási Albert networks with

m = 2. On these networks we run two different systems

of equations.

ẋk = −Bxfk +
∑
j

AkjR
xhk

xhk + 1
(3)

ẋk = −Bxk +
∑
j

AkjR(1− xk)xj (4)

System (3) arises from regulatory systems and gene ex-

pression [1], (4) arises from epidemic spreading processes

[7].

In figure 1 and figure 2 we present the results from the

basic meanfield approach where no additional iteration is

done on each rank along with the results after ten addi-

tional converging iterations are done on each rank. The

error ε we calculate is proportional to the serially calcu-
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lated steady state x∗ of the system given the initialization.

ε =

N∑
k=1

|xk(t)

x∗k
| (5)

We can see that the error is small for the tests with ten

iterations of message passing to convergence. Furthermore

a single round of computation to convergence without any

message passing is low as well. Our results with respect

to the basic meanfield approach mirror those expected

from previous work [5] and our results adding additional

iterations improve significantly upon them.

We also present scaling properties in figure 3 on a test

suite of networks obtained from the Koblenz network

repository. These networks range in size and homogeneity

and we observe power law scaling. This suggests promising

scalability for large networks.

Our data suggests significant accuracy when estimat-

ing steady states, however there is a discrepancy in per-

formance between different network topologies. Further

research estimating the error of this method on networks

with varying parameters such as assortativity will be nec-

essary in order to apply it to larger networks where serially

computed fixed points can not be used for validation. Sim-

ilarly, our data also suggests that the choice of equation

affects error which is also worth further experimentation

and analysis.
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Figure 1: Error results for epidemic dynamics using the

meanfield method (blue) and the meanfield method with

message passing (red) for 20 random graphs with pa-

rameter p = 0.05 and 20 Barabási Albert networks with

parameter m = 2. Meanfield plus message passing is

iterated 10 times.
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Figure 2: Error results for regulatory dynamics using

the meanfield method (blue) and the meanfield method

with message passing (red) for 20 random graphs with

parameter p = 0.05 and 20 Barabási Albert networks

with parameter m = 2. Meanfield plus message passing is

iterated 10 times.
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Figure 3: Computation time per edge versus the number

of available MPI ranks are shown. Tests were run in serial

up to 16 MPI ranks in subsequent powers of two. We see

a clear power law scaling relationship on the test suite

obtained from Koblenz.
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