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Summary

This work introduces a technique - Metadata-Orthogonal

Node Embedding Training (MONET) - to control bias in

graph representations from potentially sensitive metadata.

We illustrate the effectiveness of MONET though our

experiments on a variety of real world graphs, showing

superior performance in tasks such as preventing political

affiliation bias in a blog network, and preventing the

gaming of embedding-based recommendation systems.

Introduction

Graph embeddings have been eminently useful in network

visualization, node classification, link prediction, and many

other graph learning tasks [4]. While graph embeddings

can be learned directly from edge data [8], there is often

accompanying node-wise metadata, like demographic or

textual features. This metadata can be measurably related

to a graph’s structure [6], and thus metadata can enhance

graph learning models [5]. However, there are applica-

tions for which it is desirable to obtain embeddings that

avoid effects of specified sensitive data. For instance, the

designers of a recommendation system may want to make

recommendations independent of a user’s demographic

information or location. Simply ignoring the metadata in

the model will not prevent the embeddings from learning

inherent correlations between metadata and the graph

structure. Thus, we propose two desiderata for controlling

sensitive metadata in graph neural networks (GNNs):

D1. Metadata influence on graph topology is modeled in

a partitioned subset of embedding space, providing

separability to the overall graph representation.

D2. Non-metadata or “topology” embeddings are debiased

from metadata embeddings with a provable guarantee

on the level of remaining bias.

In this work we propose a novel GNN technique, MONET,

that satisfies both of these desiderata. Essentially,

MONET is a new GNN layer that executes training-time

linear debiasing of graph embeddings, by ensuring that

metadata embeddings are trained on a hyperplane orthgo-

nal to that of the topology embeddings.

Figure 1: Illustration of the MONET unit.

Methodology

We introduce the MONET unit in an unsupervised graph

embedding approach which applies the GloVe model [7] to

a “corpus” of random walks [3]. Suppose we wish to embed

a graph with n nodes from random-walk co-occurrence

counts Cn×n. Ignoring bias terms and loss weights [7], the

GloVe loss is:

LGloVe =
∑
i,j≤n

(UT
i Vj − log(Cij))

2.

Above, U, V ∈ Rn×d are the “center” and “context” node

embeddings, which can be summed to provide an overall

graph representation. Now, suppose we have node meta-

data M ∈ Rn×m. To achieve D1, we feed M through a

neural network with weights T , giving metadata embed-

dings X and Y , as shown in Figure 1. We concatenate the

metadata embeddings, yielding what we call GloVemeta:

LGloVemeta =
∑
i,j≤n

(UT
i Vj +XT

i Yj − log(Cij))
2.

The metadata embedding spaces X,Y could relieve the

topology spaces U, V of the responsibility to encode meta-

data information, removing bias. However, we find – em-

pirically and theoretically – that this does not fully occur.

A phenomenon called “metadata leakage”, which we define

and prove in the full version of this work, allows topol-

ogy embeddings to duplicate graph-structure metadata

correlations before the metadata embeddings converge.
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MONET: To prevent metadata leakage, satisfying D2, we

introduce Metadata-Orthogonal Node Embedding Train-

ing (MONET), which uses the Singular Value Decompo-

sition (SVD) of the metadata representation to directly

control topology embedding bias. With Z = X + Y as

the metadata representation, let QZ be the left-singular

vectors of Z. Define the projection PZ := In×n −QZQ
T
Z .

As illustrated in Figure 1, the MONET unit projects the

embeddings U and V onto the metadata-orthogonal plane,

via the operation DZ(A) := PZA:

LMONETG =
∑
i,j≤n

(DZ(U)Ti DZ(V )j +XT
i Yj − log(Cij))

2.

Experiments

To investigate embedding bias, we apply standard base-

lines, an adversarial debiasing baseline [2], GloVemeta, and

MONETG to the Political Blogs graph [1], using blog

affiliation as metadata. We measure embedding bias by

the ability of a Linear SVM to predict affiliation from

the embeddings on held-out test sets. As seen in Fig-

ure 2, only MONETG’s performance is consistent with

a random baseline, showing exact debiasing. GloVemeta

is still biased, showing metadata leakage. Interestingly,

adversarially-debiased embeddings are still quite biased.

Figure 2: Prediction bias from MONET and baselines.

On another experiment, we inject an artificial ranking-

inflation attack into the MovieLens graph, embedding

movie (item) nodes, and using attack counts as metadata.

For a given set of embeddings, we measure MRR (ranking

accuracy) against the number of attacked movies with

artificially inflated rankings (bias). We introduce a tuning

parameter into MONET’s DZ to investigate bias-accuracy

trade-off. As seen in Figure 3, we find that MONETG

performs 8x better than random at perfect debiasing (λ =

1.0), scaling up to baseline performance as λ decreases.

Figure 3: Item retrieval bias vs accuracy on MovieLens.

Discussion

There are two promising directions of future work.

First, MONET only guarantees linear debiasing.

Methods and exact guarantees for controlling non-

linear associations should be investigated. Sec-

ond, the performance of MONET in deeper GNNs

and with high-dimensional metadata should be ex-

plored. Code for MONET and experiments is at

github.com/google-research/google-research/

tree/master/graph_embedding/monet.
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