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Summary

We consider cascading dynamics on modular, degree-

heterogeneous networks, and focus especially on the im-

pact of seeding strategies that take node degree into ac-

count. We demonstrate that there are approximate equa-

tions (valid in the N → ∞ limit) that require only one

dynamical variable per module, rather than a separate

variable for each degree class. These approximate equa-

tions let us prove that there is a critical level of intercon-

nectedness between two statistically equivalent modules,

below which a global cascade is impossible given initializa-

tion contained within one module, regardless of seeding

strategy.

Methodological Contribution

We consider irreversible binary-state dynamics

(“inactive”→“active”), where the probability that

a node becomes active is a nondecreasing function of

its number of active neighbors. A general technique to

approximate the outcome of such dynamics subject to

random seeding was developed by Gleeson [1], and rests

on an assumption that the network is treelike (i.e. has

few short loops); here we demonstrate that this approach

can be adapted to incorporate degree-targeted seeding. A

direct application of Gleeson’s technique would require

one dynamical variable for each pair of (module, degree)

values. In contrast, we show that the dependence of

activation probability on degree is entirely captured by

the initial activation probability, leading to dynamics

with only a single dynamical variable per module. The

equations are:
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where eij is the fraction of links between modules i and j,

p
(j)
k is the degree distribution of module j, z(j) the mean

degree of module j, ρ
(j)
0,k the probability that a degree-k

node in module j is active initially, and F (j)(m, k) is the

activation function, the probability that a degree-k node in

module j becomes active when it has m active neighbors.
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Figure 1 demonstrates that our approach accurately cap-

tures cascading dynamics for both uniform seeding (i.e.

independent of degree) and seeding targeted at only the

highest-degree nodes.

Conditions for Cascade Spreading

Although our theory applies to networks with an arbitrary

number of modules and an arbitrary (monotone) activation

function, we apply our theory to a special case that lets

us draw conclusions about how cascades spread from one

module to another. It consists of two-state linear threshold

dynamics [2, 4] on a two-module network with a given

degree distribution and fraction of intra- vs. inter-module

links. By adjusting the degree distribution and the fraction

of intra- vs. inter-module links, we can explore both the

space of degree heterogeneity and that of modularity. This

system was previously studied by Nematzadeh et al. in

the case of uniform seeding [3].

We consider that all the seed nodes are contained within

a single module, so that we can discern conditions under

which a cascade can spread to the second module, and

consider two different seeding strategies. On the one hand,

we select a certain fraction of nodes uniformly at random,

i.e. independently of their degree. On the other hand, we

select the same total fraction of nodes but ensure that

they are of the highest possible degree. We compare the

two seeding strategies across the joint space of degree

heterogeneity and modularity.

Results

Similarly to classic results about percolation, we find that

targeting high degree nodes can lead to a global cascade in
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Figure 1: Degree-targeted seeding creates a global cascade

(main figure) in a regime where uniform seeding does not

(inset), as demonstrated by both theory (solid curves)

and dynamics on an actual network of size 5× 105 (open

circles).

regimes where uniform seeding leads to only small, isolated

events, and that this effect is more pronounced in more

degree-heterogeneous networks. However, we also observe

that regardless of the seeding protocol used, there is a

critical fraction of inter-module links that must be present

for a cascade started in one module to fully activate the

other. These results are shown in Fig. 2.

Moreover, we support this observation by proving that

it holds for the equations we derived. In essence, we prove

that if the first module has more active nodes than the

second, then the same is true after all nodes update their

state. Hence if the cascade completely activates the second

module, it must be that the first module is completely

activated. Because the eventual state of the system is

independent of the order in which nodes are updated,

global activation is not possible unless it is possible given

full activation of the first module. This defines a critical

level of inter-module connectivity, µ, required for global

activation to be possible. We can visualize this value of µ

in terms of the existence or non-existence of a nontrivial

stable fixed point of a 1d iterated map, see Fig. 3.
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Figure 2: Summary of the joint effect of inter-module con-

nections (µ) and degree heterogeneity (pnest) on the extent

of cascade spreading, under both uniform and degree-

targeted seeding, as predicted by the approximation (top)

and by averaging over direct simulation of the network

dynamics, on networks of size N = 2.5 × 104, averaged

over ten realizations (bottom).
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Figure 3: Visualization of the iterated map that deter-

mines the possibility of global activation, for two different

values of µ. Orange curve is the right-hand side of the

map while the blue line is the identity, so intersections

correspond to fixed points. Notice that for µ = 0.23 there

is only one fixed point, at q = 1, while for µ = 0.18, an

additional pair of fixed points (one stable, one unstable)

appears with q < 1, corresponding to partial activation of

module 2.
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