
A SCALABLE UNSUPERVISED FRAMEWORK FOR COMPARING GRAPH EMBEDDINGS
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Summary

There are many algorithms to embed graphs into vector

space, and most of them have parameters to set. We

provide a framework to efficiently compare the quality of

embeddings in a purely unsupervised way.

Introduction

A graph embedding is a mapping of the vertices of a graph

into k-dimensional vectors. Good embeddings should cap-

ture the graph topology and vertex-to-vertex relationship.

Several graph embedding algorithms are available and for

each algorithm, parameters need to be set such as the

dimension of the embedding space. As a result, selecting

the best embedding is a challenging task. We propose

an unsupervised framework to compare the quality of

different embeddings for a given graph. The framework

relies on two main ingredients: (i) a good, stable graph

clustering algorithm; we use the ECG algorithms detailed

in [4], and (ii) a generalization of the Chung-Lu model for

graphs which incorporates the geometry provided by the

graph embedding.

Geometric Chung-Lu Model

In the Chung-Lu model [1], given some degree distribu-

tion w = (w1, . . . , wn) over n vertices v1, . . . , vn, edge

probabilities of a generated graph are defined such that

the expected degrees for the vertices agree with this dis-

tribution. In our proposed Geometric Chung-Lu model

(GCL), we also consider an embedding of the vertices of

G in some k-dimensional space E : V → Rk. In particular,

for each pair of vertices, vi, vj , we know the distance be-

tween them: dist(E(vi), E(vj)). We consider 0 ≤ di,j ≤ 1,

a normalized version of those distances. The probability

that vi and vj are adjacent is proportional to s(di,j), a

decreasing function s. For some choice of α ∈ [0,∞), we

define s(di,j) := (1− di,j)α for all di,j ’s. This choice gives

us a good variety of functions to choose from. Choosing

a large value for α makes it less probable to have long

edges in embedded space. For a small value for α, the

distance in embedded space has less importance, and it is

completely ignored when α = 0.

The GCL model is the random graph G(w, E , α) on the

vertex set V = {v1, . . . , vn} in which each pair of vertices

vi, vj , independently of other pairs, forms an edge with

probability pi,j , where pi,j = xixjs(di,j) for some learned

weights xi ∈ R+. The weights are such that the expected

degree of vi is wi = degG(vi) for all 1 ≤ i ≤ n. We show

in [2] that there exists a unique selection of weights xi,

provided that the maximum degree of G is less than the

sum of degrees of all other vertices. Moreover, we show

how to efficiently compute those weights numerically to

any desired precision.

The Framework

Given a graph G = (V,E), its degree distribution w on

V , and an embedding E : V → Rk of its vertices in

k-dimensional space, we perform the five steps detailed

below to obtain ∆E(G), a divergence score for the em-

bedding. We can apply this algorithm to compare sev-

eral embeddings E1, . . . , Em, and select the best one via

argmini∆Ei(G).

Step 1: Run some stable graph clustering algorithm on

G to obtain a partition C of the vertex set V into `

communities C1, . . . , C`.

Step 2: For each 1 ≤ i ≤ `, let ci be the proportion of

edges of G with both endpoints in Ci. Similarly, for each

1 ≤ i < j ≤ `, let ci,j be the proportion of edges of G with

one endpoint in Ci and the other one in Cj . Define:

c̄ = (c1,2, . . . , c1,`, c2,3, . . . , c`−1,`), ĉ = (c1, . . . , c`) (1)

These graph-based vectors characterize the partition C

from the perspective of G.

Step 3: Given α ∈ R+ and vertex partition C, consider

G(w, E , α), the GCL model. For each 1 ≤ i < j ≤ `,

we compute bi,j , the expected proportion of edges of

G(w, E , α) with one endpoint in Ci and the other one

in Cj . Similarly, for each 1 ≤ i ≤ `, let bi be the expected

proportion of edges within Ci. We get:
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b̄E(α) = (b1,2, . . . , b1,`, b2,3, . . . , b`−1,`),

b̂E(α) = (b1, . . . , b`). (2)

These GCL-based vectors characterizes partition C from

the perspective of the embedding E .

Step 4: We use the Jensen-Shannon divergenceto measure

the dissimilarity ∆α between the vectors obtained in (1)

and (2).

Step 5: Run steps 3 and 4 for several choices of α. Let

α̂ = argminα∆α. We define the divergence score for

embedding E on G as: ∆E(G) = ∆α̂.

Illustration

We illustrate our framework on the well-known Zachary’s

Karate Club graph [5]. We generated over 600 embeddings

in dimension 2 to 128, using several different algorithms.

In Figure 1, we display the best and worst embeddings

according to our framework. Projection in 2 dimensions is

obtained with UMAP1. Different colors and shapes for the

vertices correspond to the two known communities. We

clearly see that the best embedding does a much better

job at keeping the vertices within each community close.

Results over several other real and artificial graphs can

be found in [2], all with conclusions similar to Figure 1.

Figure 1: The Karate Club Graph. We show the best

(left) and worst embeddings according to our framework

given over 600 different choices.

Scaling to Large Graphs

In order to scale up to very large graphs, we need to ad-

dress the fact that in Step 3, we require the computation

of Θ(n2) distances in the embedded space, which can be

prohibitive. We do so by grouping vertices from the same

part of C that are close to each other in the embedded

space. Once such refinement of partition C is generated,

1github.com/lmcinnes/umap

we simply replace each group by the corresponding aux-

iliary vertex that is placed in the center of mass of the

group it is associated with. We call such auxiliary ver-

tices landmarks, which we can then use to approximate

the vectors in (2). The only small difference we need to

account for is that this process will introduce loop edges

for the landmarks. For such edges, we use the average

distance between nodes in the group and the landmark in

embedded space. Since we aim for a fast algorithm, the

total number of landmarks should be close to O(n1/2).

In Figure 2, we illustrate this process by looking at

the ABCD benchmark graph [3]2 with 100,000 vertices.

On the x-axis, we vary the number of landmarks while

on the y-axis, we compare the divergence for some given

embedding, as well as the running time. We see that

very good results are obtained with as little as hundreds

of landmarks, which run in a few seconds, compared to

several minutes with 10,000 landmarks.

Figure 2: An illustration of the scalable landmark-based

version of our framework on a benchmark graph with

100,000 vertices.
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[4] V. Poulin and F. Théberge. Ensemble clustering for graphs:
Comparison and applications. Applied Network Science vol. 4,
no. 51, 2019.

[5] W. Zachary. An information flow model for conflict and fission
in small groups. Journal of Anthropological Research 33, 1977.

2github.com/bkamins/ABCDGraphGenerator.jl

2


	Introduction
	Geometric Chung-Lu Model
	The Framework
	Illustration
	Scaling to Large Graphs

