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Summary

Modern network datasets often contain rich structure

that goes beyond simple pairwise connections between

nodes, such as multiple interaction types of “higher-order

interactions” involving more than two nodes at a time.

However, developing rigorous methods for analyzing data

with such richer models is a chalenge. Here, we develop a

computational framework for clustering hypergraphs with

categorical edge labels (i.e., different interaction types),

where clusters corresponds to groups of nodes that fre-

quently participate in the same type of interaction, and

develop algorithms with strong theoretical guarantees.

Background and problem setup

The simple network model of nodes and edges is a powerful

and flexible abstraction. Over time, more expressive mod-

els have been developed to incorporate richer structure

found in data. In one direction, models have more infor-

mation on the nodes and edges; for example, multilayer

networks capture nodes and edges of different types [5].

In another direction, higher-order or multi-way interac-

tions between several nodes — as opposed to pairwise

interactions — are paramount to the model [2]. Designing

methods that effectively analyze the richer structure en-

coded by these expressive models is an ongoing challenge.

In this work, we focus on the fundamental problem of

clustering, where the general idea is to group nodes based

on some similarity score. While graph clustering methods

have a long history [4], existing approaches for rich graph

data do not naturally handle networks with categorical

edge labels. In these settings, a categorical edge label

encodes a type of discrete similarity score — two nodes

connected by an edge with category label c are similar

with respect to c. This structure arises in a variety of

settings: brain regions are connected by different types

of connectivity patterns, edges in coauthorship networks

are categorized by publication venues, and copurchasing

data can contain information about the type of shopping

trip. In the examples of coauthorship and copurchasing,

the interactions are also higher-order — publications can

involve multiple authors and purchases can be made up

of several items.

Here, we develop a scalable clustering framework for

edge-labeled hypergraphs. Given a network with k edge

labels, we create k clusters of nodes, each corresponding

to one of the labels. As an objective function for cluster

quality, we seek to simultaneously minimize the number

of edges that cross cluster boundaries and the number of

intra-cluster “mistakes”, where an edge of one category is

placed inside the cluster corresponding to another category.

Our methodology is based on a combinatorial objective

function related to correlation clustering on graphs but

enables the design of much more efficient algorithms that

also seamlessly generalize to hypergraphs.

Notation. Let G = (V,E,C, `) be an edge-labeled (hy-

per)graph, where V is a set of nodes, E is a set of

(hyper)edges, C is a set of categories (or colors), and

` : E → C is a function which labels every edge with a

category. We use k = |C| to denote the number of cate-

gories, Ec ⊆ E for the set of edges having label c, and r

for the maximum hyperedge size (i.e., order), where the

size of a hyperedge is the number of nodes it contains.

Categorical edge clustering objective. Given G, we

consider the task of assigning a category (color) to each

node in such a way that nodes in category c tend to

participate in edges with label c, i.e., we seek to partition

the nodes into k clusters with one category per cluster. We

encode the objective function as minimizing the number

of “mistakes”, where a mistake is an edge that either

(i) contains nodes assigned to different clusters or (ii) is

placed in a cluster corresponding to a category which is

not the same as its label. This objective function is related

to chromatic correlation clustering [3], which carries an

additional penalty for pairs of unconnected nodes in the

same category. Our adjustment leads to several favorable

differences in computational tractability.

Formally, let Y be a categorical clustering, or equiv-

alently, a coloring of the nodes, where Y [i] denotes the

color of node i. We define mY : E → {0, 1} as a category-
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Figure 1: Subgraphs used for the s-t cut reduction of two-

color Categorical Edge Clustering in hypergraphs. Here,

α and β are hyperedges in the original hypergraph with

colors c1 (orange, left) and c2 (blue, right).

mistake function, defined for a (hyper)edge e ∈ E by

mY (e) =

1 if Y [i] 6= `(e) for any node i ∈ e,
0 otherwise.

(1)

Then, the Categorical Edge Label Clustering objective

score for the clustering Y is simply the number of mistakes:

CatEdgeClus(Y ) =
∑
e∈E

mY (e). (2)

Overview of theoretical results

When there are only two categories, we can solve the Cat-

egorical Edge Clustering problem exactly in polynomial

time through a reduction to an s-t cut problem on a mod-

ified graph G′ = (V ′, E′). The reduction is quite simple:

we add terminal nodes s = vc1 and t = vc2 (corresponding

to categories c1 and c2) as well as all nodes in V to V ′. For

each hyperedge e = (v1, . . . , vr) of G, we add a node ue to

V ′ and add directed edges to E′ (see also Fig. 1): if e has

label c1, add (s, ue), (ue, v1), . . . , (ue, vr) to E′; otherwise,

e has label c2, and add (ue, t), (v1, ue), . . . , (vr, ue) to E′.

The minimum s-t cut on G′ produces a partition that also

minimizes the categorical edge clustering objective.

We establish that Categorical Edge Clustering is NP-

hard in the case of more than two categories by a reduction

from the maxcut problem. We then present several approx-

imation algorithms with nice approximation guarantees.

The first set of algorithms are based on practical linear pro-

gramming relaxations, achieving an approximation ratio

of min (2− 1/k, 2− 1/(r + 1)). The second approach uses

a reduction to multiway cut, where practical algorithms

have a (r + 1)/2 approximation ratio and algorithms of

theoretical interest have a 2(1− 1/k) approximation ratio.

A final approach optimally solves a modified objective,

which runs in linear time and yields an r-approximation.

Table 1: Performance of our linear programming relax-

and-round algorithm (LP) compared against baselines of

Majority Vote and the ChromaticBalls (CB) and Lazy-

ChromaticBalls (LCB) from chromatic correlation cluster-

ing [3]. Performance is listed in terms of the approximation

guarantee given by the LP lower bound (lower is better).

Approx. Guarantee

Dataset |V | |E| r k LP MV CB LCB

Brain 638 21180 2 2 1.0 1.01 1.56 1.41

MAG-10 80198 51889 25 10 1.0 1.18 1.44 1.35

Cooking 6714 39774 65 20 1.0 1.21 1.23 1.24

DAWN 2109 87104 22 10 1.0 1.09 1.31 1.15

Walmart-Trips 88837 65898 25 44 1.0 1.2 1.26 1.26

Our simple LP algorithm performs well in practice and

we use the lower bound provided by the relaxation as a

proxy for the performance of Categorical Edge Clustering.

Overview of experimental results

In this brief abstract, we show that our algorithms indeed

works well on a broad range of datasets at optimizing our

objective function and discover that our LP relaxation

tends be extremely effective in practice, often finding an

optimal solution (Table 1). Other results demonstrat-

ing the efficacy of our method in temporal community

detection and data mining appear in our paper [1].

Extensions to fairness problems

We have also developed a regularized Categorical Edge

Clustering objective that penalizes overrepresentation of

colors within any cluster and have used it to explore both

fairness from the concept of disparate impact as well as

to solve a novel problem of forming teams based on past

experience. We will present preliminary results on these

findings as well.
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