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Summary

A tangle is a structure that defines a highly cohesive region

of a graph in a flexible manner [8]. As communities in

networks are also highly cohesive regions, tangles may cor-

respond to communities. Here, we describe an algorithm

for finding tangles and use it to investigate how well these

tangles represent communities.

Tangles

Graph theory defines many cohesive structures, such as

grids, cliques and blocks. These structures are defined

crisply, and it can be difficult to describe regions that al-

most meet the definitions; tangles are an attempt to give a

mathematically rigorous description of cohesive structures

that allows for some ‘fuzziness’ of the boundaries [8]. Our

hypothesis is that tangles correspond to communities in

networks, in the context of overlapping communities.

Tangles were originally described by separations of edges

[8], and also exist in other contexts, but separations of

vertices are more natural for describing communities and

are used here. Separations are then bipartitions of vertices,

the number of edges connecting the parts giving the order

of the separation. They are denoted by an ordered pair of

their parts, (A,B), whose union is the entire vertex set.

(A,B) is oriented towards B and is distinct from (B,A).

Oriented separations can be selected so that they are

all oriented towards overlapping parts of a single highly

cohesive region, and such a selection, obeying certain

properties, is called a tangle.

Formally, a tangle T of order θ in a graph is a set of

oriented vertex separations, all of order < θ, conforming

to the following three axioms:

1. the tangle contains exactly one orientation of every

separation of order < θ.

2. any three separations must be oriented consis-

tently towards some part of the graph: for every

(A1, B1), (A2, B2), (A3, B3) ∈ T we have B1 ∩ B2 ∩
B3 6= ∅. This provides most of the descriptive power.

3. for any (A,B) ∈ T , |B| > 1. This prevents trivial

tangles.

An algorithm for finding tangles

The current method of finding all the separations is an

exhaustive search. This task is specific to separations of

vertices, and must be modified for other types of tangles.

Once the separations of a given order are identified, they

must be oriented, a task which is general to all types

of tangles. An empty tree is created to record these

orientations. Each separation is tested in sequence against

the three axioms, and a branch is added to the tree for

each orientation that conforms to all axioms.

Since a tangle is a collection of oriented separations,

potentially representing a community, it is necessary to

identify the vertices with communities. We have assigned

a vertex to a given tangle community if some proportion

(the vertex inclusion threshold, either 0.95 or 1) of the

separations are oriented towards that vertex.

As lower-order tangles identify more clearly distinct

regions, they are more useful for identifying communities,

so we only compute tangles of each order up to a pre-

defined maximum (6).

Our current implementation scales poorly with the num-

ber of edges, and limits the results presented here.

Results

To assess how closely tangles correspond to communities,

we use three criteria for assessing the quality of divisions

of a network. These require metadata that reflects the

community memberships of each node. In protein-protein

interaction networks, the Gene Ontology (GO) annota-

tions [2, 9] provide this. We thus present results from two

small protein-protein interaction networks (labelled A and

B) from Saccharomyces cerevisiae [10].

The three quality metrics we use are:

• Community Similarity: the average similarity of all

pairs of nodes in a community divided by average

similarity [1]. We use Total Ancestry Measure [11],

the probability that two proteins share common GO

ancestors.

• Normalised Mutual Information: The mutual infor-

mation between the GO annotations for each node

1



and the communities it is assigned to [4].

• Community Coverage: The fraction of nodes assigned

to at least one non-trivial community (≥ 3 nodes) [1].

For all metrics, larger values reflect better performance.

In order to judge the tangle algorithm in context, we ad-

ditionally calculated these metrics for a number of existing

overlapping community detection algorithms:

• Line graph methods: a line graph of the original

graph is created, then a disjoint community detection

method is used [3], with the following options:

– The line graph was either unweighted (UW)

or weighted (W), where the edge weights were

scaled by the degrees of the original vertices

– The disjoint community detection method was

either edge-betweenness hierarchical clustering

(EB) [6], or modularity optimisation (Mod) [5]

• Clique percolation method (CPM): communities are

defined as the unions of adjacent overlapping cliques

[7]. Clique sizes of 3 to 6 were used, but for the larger

clique sizes, no communities were detected.

Network A

Algorithm Sim NMI Cover

Tangles (3, 1.0) 3.1328 0.4276 0.55

Tangles (4, 1.0) 3.1304 0.43 0.55

EB, UW 1.6143 0.4777 1

Mod, W 1.6913 0.2967 1

CPM, k=3 3.3709 0.419 0.49

Network B

Algorithm Sim NMI Cover

Tangles (3, 1.0) 0.9596 0.3107 0.57

Tangles (6, 0.95) 1.5297 0.2839 0.98

EB, UW 1.6454 0.4197 1

CPM, k=3 2.3158 0.4241 0.38

Quality metrics for two protein networks, for the tangle

algorithm, parameters shown as (maximum tangle order,

vertex inclusion threshold), and for the comparison meth-

ods grouped by class. Only the best results for each metric

in each class are reported.

Discussion

The metrics for the tangle algorithm are generally compa-

rable to those found using existing methods, although it

performs better on the first network. A vertex inclusion

threshold of 1 generally gives better results than 0.95, with

the exception of similarity for network B, but classifies

only part of the network, similarly to clique percolation.

The poor performance on similarity for network B appears

to be due to a single order 2 tangle which is composed

of the entire network excluding the leaf nodes, which has

lower average similarity than the network itself. Since

the network is small with only a few tangles, this low-

similarity tangle has a disproportionate effect, particularly

at threshold 1 as there are fewer non-trivial tangles. This

effect should disappear for larger networks

While the tangle algorithm is too computationally ex-

pensive to provide an practical method for finding commu-

nities, these results suggest that communities can indeed

be described by tangles, and tangles may thus give insight

into the nature of communities. We are undertaking fur-

ther work to explore the relationship and to improve the

efficiency of the algorithm.

References

[1] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann. Link com-
munities reveal multiscale complexity in networks. Nature,
466(7307):761–764, 2010.

[2] M. Ashburner et al. Gene ontology: tool for the unification
of biology. The Gene Ontology Consortium. Nat. Genet.,
25(1):25–29, 2000.

[3] T. S. Evans and R. Lambiotte. Line graphs, link partitions,
and overlapping communities. Phys. Rev. E Stat. Nonlin. Soft
Matter Phys., 80(1 Pt 2):016105, 2009.

[4] A. Lancichinetti, S. Fortunato, and J. Kertész. Detecting the
overlapping and hierarchical community structure in complex
networks. New J. Phys., 11(3):033015, 2009.

[5] M. E. J. Newman. Modularity and community structure in
networks. Proc. Natl. Acad. Sci. U. S. A., 103(23):8577–8582,
2006.

[6] M. E. J. Newman and M. Girvan. Finding and evaluating
community structure in networks. Phys. Rev. E, 69(2):026113,
2004.
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