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Summary

Starting with EEG data collected from adolescents at

high risk for disordered thinking and a low risk control

group, we produce temporal correlation networks of theta

wave activity as they engage in tasks involving atten-

tion and working memory. We run multilayer modularity

community detection with GenLouvain to calculate the

node-level flexibility in these temporal networks. We find

that these flexibility measures distinguish between the two

groups high accuracy, and use the discriminating hyper-

plane between the groups to examine how the brains in

the two groups are processing the tasks differently. We

show that more basic network measures are ineffective at

discriminating between the classes.

Method

Data: Subjects of high and low clinical risk for disordered

thinking had EEG neuronal activity data recorded at 64

locations on the skull under different memory tasks in two

batches separated by a social anxiety stressor. Each batch

of tasks consisted of 3 fractal N -back tests of N = 0, 1, 2,

with fractal images appearing for one second, followed by

two seconds in between images. For each subject and task

type, the three-second windows where they successfully

identified the images were isolated. The EEG signals

were decomposed into frequency bands, binned into 301

0.01sec windows, and then averaged over all successful

three-second windows (with the image appearance at t =

1s). At each time point, Pearson correlations of the theta

frequency band (4–8 Hz) signal were calculated between

the 64 electrode node locations. We then took the absolute

value of these correlations, yielding a 64×64×301 temporal

correlation network for each subject and task type. There

is also similar data from the same tests for the alpha

frequency band (8–13 Hz).

Basic network measures: In order to justify turning

to community based measures, we first calculated several

more basic measures on the network with weights Wij

given by the absolute values of correlations. We then took

these, flattened them into feature vectors, and performed

Support Vector Machine (SVM) classification to see how

well these measures could distinguish between the low and

high risk groups. For each layer of the multilayer networks,

we calculated node strength, characteristic path length

(based on edge lengths of 1/Wij), local efficiency, and a

weighted version of the clustering coefficient [4],
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Community assignments to Flexibility: Multilayer

modularity community detection was performed separately

on the temporal correlations for each subject and task

type, using repeated calls of the iterated GenLouvain al-

gorithm [3], selecting the result with highest multilayer

modularity. The results presented here are obtained using

the same resolution parameter γ = 0.8 across all temporal

layers and the same interlayer coupling parameter ω = 1

between nearest-neighbor-in-time layers (see [3] for de-

tails). GenLouvain finds a hard partition of node-layers

into communities. Let cti be the community label of node

i in time layer t. Motivated by previous use of commu-

nity flexibility in task-based fMRI data [1], we calculate

node flexibility in terms of the numbers of times that the

node switches communities in a time window. For slid-

ing windows of length s, f ti is the normalized number of

times that node i switches communities between temporal

window t and t+ s, that is,
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1
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where δ is the Kronecker delta function. Whereas previous

work has primarily used flexibility averaged over nodes,

we leave the node dependence intact here.

Separating Hyperplanes in Flexibility Space: For

each s, the 6× 64× (301− s) flexibility values for a single

subject over all 6 tests were flattened into a single feature

vector, ~xp, with class label yp ∈ {+1,−1} (corresponding

here to low v. high clinical risk). We then used SVM clas-

sification to identify a separating hyperplane between the

classes, defined by normal ~n and bias β, which maximizes
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the projected distance between the points in each class

closest to the hyperplane (the support vectors) [2].

Results

Accuracy of Discrimination: Using the flattened fea-

ture vectors combined from the six task types, SVM was

trained on 60 of the 75 subjects. The remaining points

were assigned a label depending on which side of the hy-

perplane they fall on, and compared to the known risk

label of the subject. This was run and averaged over

100 times each for various window sizes and features: the

basic network measures mentioned earlier, flexibility of

the theta correlation matrices, and flexibility of the alpha

correlation matrices. The resulting accuracies of predic-

tion using these different features are displayed in Figure

1. We see that the theta-flexibility measure performs far

above all others at all but the lowest window sizes.
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Figure 1: Window size vs accuracy of various methods, with

a train/test split of 60/15, averaged over 100 runs; red is theta-

flexibility, black is alpha-flexibility, green is node-averaged

theta-flexibility, yellow is node strength, cyan is local efficiency,

blue is CPL, magenta is clustering coefficient

Analysis of Results: From Figure 1, we can see that flex-

ibility is a significantly better predictor of risk than more

basic network measures. This provides further support

for the use of flexibility as a measure on temporal brain

networks and the importance of community structure in

the way these systems operate.

We see that for mid-range window sizes, node-

averaged flexibilty performs with similar accuracy as node-

dependent flexibility. Since node-dependent flexibility

carries more information about the underlying systems,

this seems to justify the choice to not average over nodes.

These results seem to justify one of the initial hypotheses

of the project, that theta band activity is more of a driver

in carrying out these memory tasks than alpha band

activity.

Analysis of the unit normals of the separating hyper-

planes should be able to help us understand how the low

and high risk subjects’ EEG signals differ, pointing the

way to understand how their brains process these tasks

differently. Much work remains in this analysis, but some

initial results are shown in Figure 2. For s = 300, cor-

responding to flexibility averaged over the entire time

window, we took the averaged normal of the hyperplanes

found over 100 runs, and unfolded it back into the 64

regions of the 6 tests. This seems to indicate the regions

which differ strongly between the two risk groups on the

basis of flexibility.

Figure 2: Unraveled normal of separating hyperplane for s =

300 discrimination, projected onto a from-above representation

of the EEG electrode locations. Values range from -0.09 (blue)

to 0.55 (red). Top row is before-stressor, bottom is after, and

the first/second/third column corresponds to 0/1/2-back test
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