
PRIORITIZED RESTREAMING ALGORITHMS FOR BALANCED GRAPH PARTITIONING

Co-Authors: Amel Awadelkarim and Johan Ugander

SIAM Workshop on Network Science 2020
July 9–10 · Toronto

Summary

We introduce a class of scalable, iterative, graph partition-

ing algorithms, called prioritized restreaming algorithms,

and show that restreamed Linear Deterministic Greedy [3]

with a custom prioritized stream ordering, ambivalence

order, results in higher quality partitions (in terms of

edge cut) than other recent scalable algorithms [5, 3, 2, 1],

including non-streaming algorithms. Motivation for this

contribution comes from an extensive comparison of the

class of restreaming algorithms [3] and a class of iterative

techniques based on label propagation [5, 2].

Background

Balanced graph partitioning is a critical step for many

large-scale distributed computations with relational data.

As graph datasets have grown in size and density, a range

of highly-scalable balanced partitioning algorithms have

appeared to meet varied demands across different domains.

These algorithms seek to find an approximate solution to

the following optimization problem: given an undirected

graph G = (V,E) on |V | = n nodes and |E| = m edges,

an integer k, and an imbalance parameter ε, find a par-

titioning P = {V1, ..., Vk} of the node set into k disjoint

shards Vi such that the number of cross-shard edges is

minimized, and
⌈
(1− ε)n

k

⌉
≤ |Vi| ≤

⌈
(1 + ε)n

k

⌉
for all i.

As the starting point for our work, we observe that

two recently introduced families of iterative partitioners—

those based on restreaming and those based on balanced la-

bel propagation—can be viewed through a common modu-

lar framework of design decisions. We build this framework

around three recent algorithms regarded as at or near the

state-of-the-art: Balanced Label Propagation (BLP) [5],

Restreamed Linear Deterministic Greedy (reLDG) [3], and

Facebook’s Social Hash partitioner (SHP) [2].

BLP and SHP belong to the family of approximation

algorithms based on label propagation, beginning from an

initial assignment, iteratively conducting node relocations

to achieve higher quality partitions. Specifically, nodes are

relocated to maximize the gain of relocation: for a node

u, its gain gu is defined as the maximum improvement

in co-located neighbor count between an external and its

current shard:

gu = max
i∈[k]
|N(u) ∩ Vi| − |N(u) ∩ VP (u)|, (1)

where N(u) is u’s neighbor set, and P (u) denotes u’s shard

assignment under partition P . To handle the balance

constraints, BLP solves a linear program at each iteration

to determine the optimal number of nodes to move from

shard i to j, for all i, j ∈ [k], whereas SHP simply makes

maximal balanced pairwise swaps between all shard pairs.

For SHP, we study three variations of the original algo-

rithm to understand the roles of its underlying modules.

One, we denote by KL-SHP, swaps nodes across shard

pairs in decreasing order by gain, allowing for nodes with

negative gain to be swapped if the net gain is positive.

A simplification, SHP-II, also swaps nodes in order of

decreasing gain, but does not allow nodes with negative

gain to be swapped. A final simplification, SHP-I, swaps

only nodes with positive gain, and in a random order.

ReLDG is an example of what are called restreaming

algorithms, processing the node set serially in repeated

streams, with each node placed according to an assignment

rule designed to achieve balance. Streaming algorithms are

commonly motivated by a highly restricted computational

framework where one is attempting to make node assign-

ments while the graph is in transit, being moved and/or

loaded (during ETL, in the language of data warehousing).

As such, the only stream orderings of the node set tested

prior to this work are random, breadth-first-search (BFS),

and depth-first-search (DFS) to mimic the order obtained

by a web-crawler or equivalent process [4]. By considering

strategic stream orderings (the order in which the node

set is considered by the algorithm) that import notions

of priority from SHP/BLP, we contribute a new class of

algorithms that we call prioritized restreaming algorithms.

Modular design decisions

Restreaming and label propagation-based algorithms can

be viewed through a unified lens in terms of how they

handle a small number of design decisions. We identify four

1

Table 1: Internal edge fraction, 16 shards, 10 iterations, exact balance (ε = 0). Highest quality partition in bold.

Synchronous Streaming (reLDG)

Graph SHP-I SHP-II KL-SHP BLP Random CC BFS Degree Ambivalence Gain

pokec 0.578 0.595 0.585 0.532 0.675 0.681 0.698 0.716 0.712 0.618

livejournal 0.626 0.648 0.625 0.617 0.674 0.666 0.731 0.745 0.749 0.671

orkut 0.535 0.555 0.534 0.531 0.650 0.628 0.665 0.689 0.679 0.626

notredame 0.783 0.635 0.652 0.612 0.882 0.864 0.929 0.902 0.924 0.878

stanford 0.737 0.711 0.697 0.629 0.856 0.844 0.891 0.900 0.916 0.793

google 0.670 0.603 0.616 0.606 0.848 0.814 0.868 0.959 0.964 0.799

such key decisions: synchronous vs. streaming assignment,

flow-based vs. pairwise constraint handling, incumbency

preference or not, and how node priority is implemented.

BLP is synchronous, flow-based, prefers incumbent nodes,

and prioritized. KL-SHP is synchronous, pairwise, without

incumbency, and prioritized. Vanilla ReLDG is streaming,

without incumbency, and without priority.

Priority in restreaming

From this framework, we develop prioritized restreaming

algorithms, motivated by the two synchronous algorithms.

We introduce several new stream orderings for considera-

tion, both static and dynamic in nature. The orderings

investigated in prior work are “static”, as they are defined

based on graph properties alone and are not updated be-

tween iterations. We add two additional static orderings

for consideration: degree and local clustering coefficient,

prioritized by streaming nodes in decreasing order.

Decreasing gain is the first prioritized dynamic order

to consider given its role in the synchronous algorithms.

However, nodes with a gain of 0 would end up tied for

last in the stream, likely be evicted from their previous

assignment. Moreover, nodes with a gain of 0 may actually

incur significant loss in being relocated. To mitigate this,

we introduce an analogous prioritized dynamic stream

order, ambivalence order, defined as

au = − max
i∈[k]\P (u)

∣∣|N(u) ∩ Vi| − |N(u) ∩ VP (u)|
∣∣ .

The higher (less negative) the ambivalence score, au, the

smaller the gap in neighbor co-location count between the

node’s current assignment and the best external shard,

and the more “ambivalent” node u is to reassignment.

Results

We report the partition qualities of all methods—BLP,

KL-SHP, its restricted forms (SHP-I, SHP-II), and reLDG

with six stream orders (random, BFS, local clustering coef-

ficient, degree, gain, ambivalence)—on several networks in

Table 1. We see that reLDG with a random stream order

outperforms the synchronous methods in all networks by a

sizable margin, a surprising result considering that reLDG

is generally regarded as further constrained by its online

design. Furthermore, we see considerable improvement

in quality from utilizing prioritized stream orders. Of

these, ambivalence order results in the highest (or nearly

highest) quality partition on the large-scale graphs we

test. From studying the rank correlation of each pair of

orders, we find that degree and ambivalence orders are

highly correlated at every iteration, suggesting degree as

the preferred static ordering.

We also observe that while BLP boasts the most bells

and whistles of the synchronous algorithms—sorting move

queues by gain, and satisfying flow-based balance using an

LP—it generally performs the worst of the synchronous

methods. Furthermore, the restricted forms of SHP, SHP-

II and SHP-I, very often do better than KL-SHP.

References

[1] K. Aydin, M. Bateni, and V. Mirrokni. Distributed balanced
partitioning via linear embedding. Algorithms, 12(8):162, 2019.

[2] I. Kabiljo, B. Karrer, M. Pundir, S. Pupyrev, and A. Shalita.
Social hash partitioner: a scalable distributed hypergraph parti-
tioner. VLDB, 10(11):1418–1429, 2017.

[3] J. Nishimura and J. Ugander. Restreaming graph partitioning:
Simple versatile algorithms for advanced balancing. In KDD,
pages 1106–1114, 2013.

[4] I. Stanton and G. Kliot. Streaming graph partitioning for large
distributed graphs. In KDD, pages 1222–1230, 2012.

[5] J. Ugander and L. Backstrom. Balanced label propagation for
partitioning massive graphs. In WSDM, pages 507–516, 2013.

2

	Background
	Modular design decisions
	Priority in restreaming
	Results

