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Summary

We develop and demonstrate a method for pruning sets

of network partitions to identify small subsets that are

significant from the perspective of stochastic block model

inference. Crucially, our method works for single-layer and

multi-layer networks, as well as for restricting focus to a

fixed number of communities when desired. We addition-

ally implemented a Python package, which is available at

https://github.com/ragibson/ModularityPruning.

Equivalence Between Modularity Maximization and

Maximum Likelihood Methods

One of the most popular methods for community detec-

tion is to heuristically maximize a quantity known as

modularity, which is usually defined as

Q =
1

2m

∑
i,j

[
Aij − γ

kikj
2m

]
δ(ci, cj) , (1)

where A is the adjacency matrix of the network, m is

the number of edges, ki is the degree of node i, and ci

is the community label of node i. Here, γ is a resolution

parameter introduced by Reichardt and Bornholdt [4] to

overcome issues resolving communities in large networks.

Another popular method for detecting communities is

to fit a particular generative model known as a “stochastic

block model” (SBM) to the network of interest. Impor-

tantly, this method is statistically principled rather than

being ad hoc or motivated through heuristics alone.

In [2], Newman showed that the maximization of (1)

is identical to optimizing the likelihood fit of a degree-

corrected planted partition SBM when

γ =
ωin − ωout

lnωin − lnωout
(2)

and all communities in the model share the same in-group

connection propensities ωin and between-group propensi-

ties ωout. We call the value in (2) the “gamma estimate”

for a partition when we determine ωin and ωout from the

empirically observed values for that partition. Notably, if

a partition is optimal with respect to modularity at its

gamma estimate, then it is also the best possible fit to an

underlying stochastic block model.

Pruning Strategy

We use this as the basis of our pruning strategy by noting

that if a partition σ1 has a lower modularity score than σ2

at a resolution parameter value γ, then σ1 is a worse fit

than σ2 to all SBMs satisfying the relation in (2). In this

sense, we can identify the most “important” partitions

by identifying those that maximize modularity at their

observed gamma estimates. We say that such a partition is

“stable” under the gamma estimation map. We visualize

the isolation of stable partitions in Figure 1.

This fundamentally relies on being able to efficiently

identify ranges of the resolution parameter γ for which each

partition has a higher modularity score than all other par-

titions of interest. Weir et al. [5] described the “CHAMP”

(Convex Hull of Admissible Modularity Partitions) algo-

rithm to achieve this goal. In short, CHAMP exploits the

fact that modularity is linear in the resolution parameters

to reduce the problem to halfspace intersection.

We also use (2) to derive upper bounds on the resolu-

tion parameter for which modularity maximization can

be equivalent to optimizing the likelihood fit to a degree-

corrected SBM, providing a priori regions wherein com-

munity detection heuristics “should” be run if a certain

number of communities is desired.

Recently, Pamfil et al. [3] generalized Newman’s equiv-

alence to several multi-layer network models in which a

collection of interrelated networks are treated as individ-

ual “layers” in a larger, connected network. We use this

to extend our pruning strategy to multi-layer networks.

Results

We have demonstrated our method on the Karate Club

for ease of explanation and have tested on several multi-

layer networks, finding that we are often able to prune the

number of identified partitions by orders of magnitude.

For instance, we found more than 500 unique partitions

by running the Louvain algorithm [1] across a range of
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(a) Input partitions obtained

at different parameter values

(b) CHAMP: removing the

nowhere dominant partitions

(c) Parameter estimation map

on CHAMP domains

(d) Pruning to the “stable” par-

titions (fixed points)

Figure 1: Visualization of our method. (a) Input partitions are obtained, usually through modularity maximization

procedures at various points across the resolution parameter space of interest. (b) CHAMP is used to determine

partitions’ domains of optimality within the resolution parameter space. Partitions that are never optimal are

discarded. (c) For each remaining partition, the “correct” value of the resolution parameters is estimated. Here, we

depict this by drawing arrows from the partition domains to their resolution parameter estimates. (d) We return the

“stable” partitions, those whose resolution parameter estimates fall within their domains of optimality; that is, we

isolate the fixed points of the parameter estimation map.

values γ ∈ [0, 2] on the Karate Club. Of these, CHAMP

identified 9 partitions that are dominant for some value of

the resolution parameter and only one of these partitions

is “stable” in the sense defined in our method here. The

partitions’ domains of optimality and associated gamma

estimates are shown in Figure 2. Here, the stable partition

has four communities and a gamma estimate of γ ≈ 1.1.

Similarly, in a synthetic multi-layer network, we were

able to reduce a set of more than 30,000 unique identified

partitions to 6 stable partitions. Notably, the stable parti-

tions produced by our method on these synthetic networks

have high alignment with the planted partition, even in

“hard regime” cases where Pamfil et al.’s iterative scheme

fails to converge. On a real-world multi-layer network of

relationships between attorneys in a law firm, we managed

to prune more than 200,000 unique identified partitions

down to 3 stable partitions. Moreover, the stable parti-

tions appear to remain high quality when the number of

input partitions is significantly reduced, suggesting that

our scheme can be used efficiently in practice.

By combining the ideas in [2, 3] with [5], our method

addresses the problem of selecting resolution parameters

(and interlayer couplings in multilayer networks) and the

challenges of stochasticity due to pseudorandom computa-

tional heuristics for modularity maximization. We note

that our method is agnostic to the manner in which candi-

date partitions are obtained and can be used to combine

results from multiple heuristics.
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Karate Club CHAMP Domains of Optimality and γ Estimates

Figure 2: The domains of optimality and associated γ

estimates for the partitions of the Karate Club in the

pruned subset from CHAMP.
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