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Summary

We introduce a distance function on directed graphs using

the hitting probability of an ordered pair of nodes, which is

the probability that a random walker starting at the first

node will reach the second before returning to the first.

Our metric uncovers direction-based structure, such as

looping and dynamical trapping, that is invisible to other

directed graph metrics and symmetrizations. Example

applications, such structure discovery, weak community

detection in dense graphs, multiscale analysis, and parti-

tioning of Markov chains, will be discussed. Full details

are available in the arXiv preprint 2006.14482, which is

currently under review.

Metric

The three undirected graph metrics (shortest path, com-

mute time/effective resistance, and diffusion distance [6])

have been widely applied to tasks such as manifold learn-

ing, link prediction, and route planning [6, 8, 1]. Most

machine learning methods expect the data to lie in a

metric space as well.

For directed graphs, metric notions become much less

obvious. For example, if there is an edge from i to j

and not in the other direction, does this mean that i is

nearer to j than j is to i? Of course, such an idea is

contrary to the spirit of a metric, so one is led to search

for formulations that account for the directionality in some

way without losing the metric symmetry. Few previous

papers have suggested metrics using generalized effective

resistance [14, 11, 3, 4] or Markov chain curvature [13],

plus many machine learning proposals [7]. A related idea

is graph symmetrization, which seeks to convert a directed

graph into an undirected graph, to which many other tools

can then be applied. The simplest such symmetrization

simply forgets edge directionality, but others have been

proposed [9].

In this work, we derive a directed graph metric based on

hitting probabilities. Given a directed, strongly connected

graph G, with nodes i and j, the hitting probability from i

to j, Qi,j , is the probability that a random walker starting

from node i will reach node j before returning to i. Using

ideas from Markov chain theory, we prove that φiQi,j =

φjQj,i, where φ is the invariant distribution. This implies

that

A
(hp,β)
i,j =

φβi

φ1−βj

Qi,j

for β ∈ [ 12 , 1] gives the adjacency matrix of an undirected,

symmetric graph. We furthermore show that when β 6= 1
2 ,

dβi,j = − logA
(hp,β)
i,j

is a metric.

When β = 1
2 , it is possible for certain sets of “bot-

tleneck” nodes to be at distance zero from each other,

making d
1
2 only a pseudometric. Such bottlenecks occur

when with Qi,j = 1, i.e. any walk beginning at i must

reach j before returning (and vice versa). We develop an

interesting structure theory of directed graphs that places

the bottleneck nodes into equivalence classes using d
1
2 and

the other nodes into segments that lie between bottleneck

nodes. Intuitively, graphs with bottleneck nodes have a

global cyclical structure for each equivalence class, and

segment membership is a way to track progress through

global cycles. Using the structure theory, we give a graph

quotienting process based on [10] which collapses equiv-

alent nodes and preserves intra-segment distances. We

also prove tight bounds on the distortion of inter-segment

distances.

The only other paper of which we are aware that uses

Q for network science is [2], which finds it effective for

link prediction. In particular, [2] does not consider sym-

metrization or metric properties.

Numerics and examples

Our metric can be computed using recent tools from

Markov process approximation theory [12]. The tech-

nique is summarized as follows: Instead of computing

Qi,j directly, one considers Qi,j,k, the probability that a

random walk starting at i reaches j before encountering

k. These quantities are related by a one-hop recurrence,

which leads to a linear algebra formula requiring the com-

putation of N N ×N matrix inverses. It can be shown
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Figure 1: A graph where dβ gives useful information not

recovered by other approaches. This is a directed Erdős-

Rényi (ER) graph, together with a directed cycle. There

are uniformly random edges from the ER graph to the

cycle, and one node in the cycle has out edges to the ER

graph. Thus, a random walker on this graph would see

the cycle as a trap that takes on average a long time to

escape relative to similarly sized subsets of the ER nodes.

A spectral approach using dβ identifies the cycle, whereas

spectral approaches based on naive symmetrization or [5]

do not.

that each of these N matrices is related to the others

by a rank 2 perturbation, so that the Woodbury matrix

identity allows the work to be reduced to a single matrix

inversion plus some adjustments. Our implementation of

this approach in MATLAB is at github.com/zboyd2/

hitting_probabilities_metric.

In examples, we compute dβ for a graph with 38 million

edges in 31 seconds on a desktop computer. The asymp-

totic complexity is O(N2) space (where N is the number

of nodes) and O(N3) time, plus the time for computing φ.

Our metric can be computed analytically on some simple

graphs, which we present. We also illustrate the results of

our method on a synthetic graphs with planted structures,

including loops and correlated directions (see Fig. 1 for

one example). Simple spectral computations based on

A(hp,β) uncover the planted structure, which is invisible

to other graph symmetrizations. We also show that our

metric is qualitatively different from other directed graph

metrics.

Applications

The metric structure is a natural starting point for a wide

variety of applications. Consider four examples:

1. Using a three-community directed stochastic block

model, applying k-means to a PCA embedding of d
1
2

enhanced weak detectability relative to k-means plus

PCA applied to A itself.

2. For a New York Taxi transit network, our metric

helped with multiscale structure detection, showing

the role of Staton Island.

3. Comparison with Euclidean distance on geometric

graphs suggests a possible consistency result for d
1
2 ,

whereas d1 may measure something very different.

4. The hitting probabilities metric is insensitive to walk

length, making it useful for long-time analysis relative

to commute time/effective resistance.
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