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Summary

Since the Barabási-Albert (BA) model was proposed

twenty years ago, the power law degree distribution of

scale-free networks is usually explained with preferential

attachment. Popularly described as “the rich get richer”,

preferential attachment ascribes inherent value to pop-

ularity. We present a randomly stopped linking model

that forms scale free networks without the presence of

preferential attachment.

Introduction

Though its applicability in network science is debated [4],

the BA model states that degree distribution- the number

of links per node- in a scale free network tends toward a

power law due to growth and preferential attachment [2].

It suggests an irresistible first-mover advantage that has

informed growth-at-all-cost strategies in many industries.

Growth in the BA model means links are formed when new

nodes join the network, so older nodes have more chances

to collect links. Preferential attachment further disad-

vantages late arrivals because links form with probability

proportional to the degree of the existing nodes. Many

complex systems show latecomers overcoming this initial

advantage, including Google’s search engine and Face-

book’s social network platform displacing well-established

players. This required tempering the BA model with a

concept of intrinsic fitness [3].

Previous research demonstrates fitness alone is sufficient

to generate scale free networks in special cases, controlling

linking with a function of the fitnesses of the two vertices

involved that is selected appropriately for the particular

fitness distribution, requiring symmetry between the two

linking nodes [7]. Our approach leads to scale free net-

works using a reparameterization of the Configuration

Model (CM) [6] and intrinsic fitness, rather than a fitness

linking function or preferential attachment and growth.

A Randomly Stopped Model

In the BA model, a node added to the network links

to existing nodes, which are preferentially picked with

probability proportional to the existing nodes’ degrees.

Instead, our model considers that nodes begin with one

link, and each link added is a discrete decision made in

series. After the first link, there is a chance the node will

gain another. If not, the process ends. If the node adds a

second link, there is now a chance to add a third link, and

so on. In the simplest approximation, we use a constant

marginal probability to add each link.

pX(k) = (1− p)k−1p (1)

where k ∈ {1, 2, 3, ...}

This randomly stopped process of adding links with the

same probability is described by a geometric distribution

(Equation 1), the number k Bernoulli trial failures before

the first success. A single geometric distribution is not

heavy-tailed and does not fit the high variance of a scale

free network well. But if each node has a different fitness,

the variance of parameter p over all nodes can also be high.

In fact, a generalized central limit theorem for variables

with infinite variance leads to heavy tails, even if the

component distributions are not themselves heavy-tailed

[8]. Specifically, a heavy tail results from mixing geometric

distributions that have uniformly-distributed parameters

[1].

pk =

∫ 1

0

(1− p)k−1p dp =
1

k(k + 1)
for k > 0 (2)

We propose setting node degree according to a mixture

of geometric distributions that together approximate a

power law. We assign all nodes a link-stopping probability

p pulled randomly from a uniform distribution between

0 to 1. As the number of nodes grows large, Equation

2 approximates the probability mass function (PMF) for

the resulting mixture of geometric distributions. This is

further approximated by a power law with γ = 2 because

pk ∼ k−2 as k gets larger.

pk =
1

k(k + 1)(k + 2)
for k > 0 (3)
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In comparison, the BA model has the exact degree

distribution shown in Equation 3 and is approximated by

a power law with γ = 3. In real networks, the scale free

regime falls between these two models and is defined by

2 ≤ γ ≤ 3.

We generated networks using the BA Model and the

randomly stopped linking model each with 30,000 nodes.

The BA Model adds 2 links with each new node, con-

necting to existing nodes with probability proportional to

the degree of the existing nodes. Our randomly stopped

linking model, however, does not use preferential attach-

ment or growth. Instead, we form links following the

CM [6]: Create nodes and allocate link stubs to each one,

then select pairs of nodes randomly to connect until all

stubs are linked. Our model is distinguished from other

versions of the CM by how the stubs are allocated to

nodes following a mixture of geometric distributions that

approximates a power law. To determine the number of

link stubs for each node, first assign a stopping probability

from a random variable uniformly distributed between 0

and 1. This probability is the parameter p in Equation

1 and the resulting geometric distributions contribute to

the overall mixture. Next, allocate each node a number

of links (degree) from a geometrically-distributed random

variable according to the PMF in Equation 1 and the

node’s fitness, p. Finally, connect these link stubs by

selecting random pairs according to the CM.

Result

Figure 1: Degree distribution and power law fit for net-

works generated from the BA and random stopping models

BA Model Random Stopping Model

kmin 15 16

γ 3.03 2.08

p-value 0.18 0.95

Table 1: Power law fit to models

The degree distribution of both networks is shown as

Figure 1. We fit power laws to each distribution using the

method described in [5]. The results in Table 1 agree with

the theoretically expected γ values for both distributions.

The kmin is the degree after which the distribution behaves

like a power law and is similar for both. We accept the

power law as a plausible hypothesis when the p-value

is greater than 0.1, which it is for both models. The

p-value is substantially larger for the random stopping

model, providing support for the hypothesis a mixture of

geometric distributions results in a power law tail.

This randomly stopped model shows that a mixed ge-

ometric distribution with widely-varying intrinsic node

fitness results in scale free networks where degree distribu-

tion approaches a power law. The model provides stronger

agreement with a power law than the BA preferential at-

tachment model without requiring any network effects or

a fitness linking function. This alternative implies pref-

erential attachment and growth may have lesser roles in

forming scale free networks than generally assumed.
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