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Summary

We study the expected adjacency matrix of a uniformly

random multigraph with fixed degree sequence d. Al-

though this matrix is central to several standard network

analysis techniques, including modularity-maximization

and mean-field theories, its general structure is not well

understood. We use a dynamical argument to derive an

estimator of the expected adjacency matrix and several

other moments; supply an algorithm to compute the esti-

mator; demonstrate its accuracy on empirical data; and

illustrate the impact of using this estimator on a simple

modularity maximization task.

Beyond Sparsity

Let Gd denote the set of multigraphs without self-loops,

and let ηd be the uniform distribution on Gd. Let W

be the (random) adjacency matrix of a graph distributed

according to ηd. We are interested in the matrix ω =

E[W].

This problem is relatively well-understood in the large,

sparse limit. In this case, the moments of ηd converge to

those of the configuration model [2]. We then have

ωij ≈ ω̂
0
ij =

didj

∑` d`
, (1)

where the approximation can be made asymptotically

precise. Many follow-up works in the network science

literature describe the matrix ω̂0 as the expectation of

“a random graph with fixed degree sequence,” but this

statement is not exactly true for any common such model,

and is not usually accompanied by error bounds. Indeed,

as Figure 1(a) illustrates, ω̂0 can behave quite poorly.

On this test data set, a subset of contact-high-school

supplied by [1, 4], ω̂0 is off by an average of 25% when

benchmarked against a Markov Chain Monte Carlo es-

timate of the ground truth. Worse, there is persistent

bias, with ω̂0 overestimating edges between vertices of

dissimilar degrees and underestimating between vertices

of similar degrees. This poor performance reflects the fact

that this data set, like many of practical interest, does

not lie in the large sparse regime. The test data contains

Figure 1: Error comparison of the estimators ω̂0 (eq. 1)

and ω̂1 (derived in the present work). The degrees of

nodes increase top to bottom and left to right. Shading

gives the relative error in each entry when using each

estimator to estimate ω, which in this case was estimated

using 107 rounds of Markov Chain Monte Carlo. Data is

a subset of contact-high-school [1], further described

in Fig. 2.

268 nodes and 10,206 edges, and contains several nodes

with degree larger than n. Unfortunately, this density

also makes it extremely intensive to estimate ω by Monte

Carlo methods [3]; the estimate in Fig. 1 was computed

in approximately one week on a single core of a standard

server. We therefore seek tractable ways to estimate ω

with practical accuracy and computational load.

A Dynamical Approach to Model Moments

We will state our results informally; all approximations

can be given precise bounds under a simple conjecture on

the structure of ηd. By treating the MCMC sampler as a

stochastic dynamical system whose state space is Gd, we

derive stationarity conditions describing the moments of

ηd. As we show, there exists a vector β ∈ Rn
+

such that

χij ≜ ηd(Wij ≥ 1) ≈
βiβj

∑i βi
= fij(β) (2)

for all i ≠ j. Furthermore, the first moment of W under

ηd is approximately

ωij ≈
χij

1 − χij
. (3)
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Figure 2: (a): Degree distribution of the contact-high-school subnetwork. (b): Distribution of the entries of w.

(c): Collapsed degree sequence β̂ learned from d by solving (4). (d): Approximation of χ via (2). (e): Approximation

of ω via (3). (f): Approximation of σij = σ(Wij).

Taken to together, these two equations provide a method

for computing an estimate of ω given knowledge of the

vector β. We construct an estimator β̂ of this vector by

solving the system of n equations

∑

j

fij(β)

1 − fij(β)
= di , i = 1, . . . , n . (4)

We prove a qualified uniqueness result on solutions of (4),

define an estimator ω̂1 as its solution, and provide an

iterative algorithm for computing this estimator. Figure 2

provides some description of the test network and illus-

trates the construction of the estimator ω̂1. The accuracy

of the derived estimator is highly favorable when com-

pared to the MCMC results. Indeed, the mean relative

error of ω̂1 is less than 2% (Figure 1(a)), with no visible

systematic bias.

We illustrate the importance of these results for down-

stream data analysis with a vignette on spectral modular-

ity maximization [5] when using the estimators ω̂0 and

ω̂1 for the null matrix. We show that the behavior and

performance of this algorithm are sensitive to both the

choice of estimator and the data used, highlighting the

need for analysts to carefully specify null models when

performing null-based data analysis.
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