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Summary

Recent advances in machine learning have shown impres-

sive performance of increasingly complex deep neural net-

works on a multitude of tasks. However, some of their most

significant achievements are in settings where the analyzed

data has an inherent Euclidean structure (e.g., spatial in

computer vision or temporal in audio and signal processing

applications). This realization gave rise to an emerging

field of geometric deep learning that aims to leverage the

extensive body of work studying non-Euclidean geometries

to process data with intrinsic graph and manifold struc-

tures. The mathematics of geometric deep learning is not

well understood, though. Inspired by the success of the

wavelet scattering model for Euclidean ConvNets, several

recent papers have generalized its construction to graphs

and manifolds (which numerically are approximated by

graphs) with the goal of better understanding the intrica-

cies of geometric deep learning. Referring to such works

collectively as geometric wavelet scattering transforms,

in this proposed talk we will give an overview of the ge-

ometric scattering transform for graphs and manifolds,

focusing on its utility as a model for graph ConvNets.

We will describe recent theoretical results that quantify

the invariance and stability properties of geometric scat-

tering networks on graphs, and which are illustrated via

numerical experiments.

Abstract

The processing of signal-based data such as auditory

recordings, images, and videos for learning tasks is of-

ten carried out with convolutional neural networks (Con-

vNets) and related architectures. A primary reason for

the success of ConvNets is the use of convolution oper-

ators, which reduces the number of learned parameters

while taking advantage of the underlying Euclidean ge-

ometry of the data. However numerous data types of

interest, including social networks, molecules in chemistry,

two-dimensional surfaces as in certain types of medical

diagnostic imaging, and computer graphics, amongst oth-

ers, do not have an underlying Euclidean structure but

do have an underlying geometric structure. In many such

cases, this non-Euclidean structure can be modelled as

an abstract graph or Riemannian manifold, the latter of

which is approximated, numerically, by a mesh graph.

Motivated by the desire to develop learning algorithms

for non-Euclidean data and the success of ConvNets for Eu-

clidean data, the nascent field of geometric deep learning

[2] seeks to develop ConvNet-type architectures for graph

and manifold based data. The resulting developments are

revolutionizing several learning tasks on non-Euclidean

data, including graph classification, generative graph and

manifold models, shape retrieval, and shape alignment,

among others. Despite these early successes, many open

questions remain, including how to structure such net-

works to best capture relevant information in graphs and

manifolds, how to compute and train them efficiently,

and how to identify the mathematical properties of the

resulting learning algorithms.

In this proposed talk we focus on the latter topic, namely

the theoretical understanding of geometric deep learning.

As geometric deep learning algorithms have evolved, they

have become more specialized on either graph based data

or manifold based data (particularly two-dimensional sur-

faces in the latter case, motivated in large part by com-

puter graphics). However, spectral analysis of geometric

ConvNets relies on studying the eigenvalues and eigenvec-

tors of the graph Laplacian in the case of graphs, and the

eigenvalues and eigenfunctions of the Laplace-Beltrami

operator for manifolds. In both settings, one defines a gen-

eralized notion of Fourier series on the graph or manifold,

which is a core component of graph signal processing [14].

Furthermore, nonlinear dimension reducing algorithms,

and in particular so-called manifold learning algorithms,

e.g., [13, 1, 3], have long relied on the close relationship be-

tween spectral graph theory (i.e., the study of the spectral

properties of the graph Laplacian) and spectral geometry

(i.e., the study of the spectral properties of the Laplace-

Beltrami operator).
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In this talk we will deliver a unified treatment of mathe-

matical properties of graph and manifold based ConvNets

through the lens of recently developed geometric versions

of the wavelet scattering transform. The Euclidean wavelet

scattering transform, first introduced by S. Mallat in [9],

has proven to be a powerful mathematical model for Eu-

clidean ConvNets [10]. Similar to the convolutional layers

of a standard ConvNet, the wavelet scattering transform

consists of a cascade of convolutional operators and non-

linearities. However, it replaces the learned filters of

ConvNets with complex-valued wavelet filters, and utilizes

the nonlinear modulus operator as its activation function.

The power of the Euclidean wavelet scattering model is

that it provably has several desirable properties, such as

guaranteed local translation/rotation invariance and Lips-

chitz stability to the action of small diffeomorphisms (see

the results in [9]), while simultaneously has been shown

to be a powerful data representation for processing 1D,

2D, and 3D signal based data [10].

In the past two years, several research articles have

generalized the Euclidean wavelet scattering transform to

graphs [16, 15, 6, 4, 5, 7] and manifolds [12, 11], using

geometric notions of wavelets [8]. We collectively refer to

these types of wavelet scattering transforms as geometric

wavelet scattering transforms. Many of these articles fo-

cus on the theoretical properties of the geometric wavelet

scattering transform, although [7, 15] illustrate its utility

and competitive performance in supervised and unsuper-

vised learning tasks associated to graphs. Both the graph

and manifold versions of the geometric wavelet scatter-

ing transform are designed to have provable invariance

properties to graph permutations and manifold isometries,

which generalize the translation and rotation invariance

of Euclidean wavelet scattering transforms. They are also

provably stable to graph perturbations and manifold dif-

feomorphisms under certain conditions, but the existing

theorems provide only partial results and warrant addi-

tional study. This talk will present an overview of the

geometric wavelet scattering transform with a focus on

the current state of the art. It provides a unified geomet-

ric signal processing framework for analyzing both graph

and manifold based ConvNets with theory and empirical

performance that show the promise of the model, and

yet many questions and unexplored research directions

remain open that would be of interest to the network

science community.

Submission

Please consider this submission for a 20 minute talk. Also,

if this abstract is accepted, in order to avoid scheduling

conflicts, please note I am organizing a mini-symposium for

the SIAM annual meeting titled “Multiscale data science

inspired by physical and biological systems.”
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