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Summary

We use mathematical programming models to study signed

networks of political collaboration and opposition in the

US Congress similar to a parliamentary body, where sev-

eral opposing coalitions may exist.
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Extended abstract

A signed graph is a graph with positive and negative signs

on the edges usually denoted as G = (V,E, σ) where V

and E are the sets of vertices and edges respectively, and

σ is the sign function σ : E → {−1,+1}.
A signed graph (network) is balanced if its set of ver-

tices, V , can be partitioned into two subsets X ⊆ V and

X = V \X such that each negative edge joins vertices

belonging to different subsets and each positive edge joins

vertices belonging to the same subset [7]. If a signed net-

work satisfies the same condition when partitioned into k

subsets, it is called clusterable (k-balanced) [9].

These two definitions are more often expressed in terms

of the classic definition of balance theory (attributed to

the works of Heider in 40’s [13] and that of Cartwright

and Harary in 50’s [7]) and the generalized definition

of weak balance (by Davis in 60’s [9]); which consider

different types of cycles to be permissible. Balance theory

[7] defines a balanced network as one where there is no

cycle whose product of signs is negative. Generalized

balance theory [9] defines a clusterable network as one

with no cycle containing exactly one negative edge.

Signed networks representing real data often do not

satisfy conditions of these theories [5]. This motivates

analyzing them based on their distance to balance [4]

and clusterability. Among different methods for mea-

suring such distance is the minimum number of edges

whose removal makes a network balanced (frustration in-

dex L(G) [12, 16, 1]), k-balanced for the given value k

(k-clusterability index Ck(G) [11]) or clusterable (cluster-

ability index C(G) [8]).

Fig. 1(A) shows an example signed graph in which the

five dotted lines represent negative edges and the two

solid lines represent positive edges. The signed graph can

be evaluated using 3-cycles (B), bi-partitioning (C), or

k-partitioning (D). The first approach, (Fig. 1B), involves

identifying triangle 1-4-5 as unbalanced and triangle 1-

3-4 as balanced and only provides limited insight into

the overall structure. The second approach, (Fig. 1C), in-

volves finding a bi-partitioning of vertices {{1, 2, 3}, {4, 5}}
(shown by green and purple colors in Fig. 1C) which

minimizes the total number of intra-group negative and

inter-group positive edges to 1 (L(G) = 1). Note that

removing edge (4, 5) leads to a balanced signed graph.

The last approach, (Fig. 1D), involves finding an optimal

k-partitioning for the vertices {{1, 2, 3}, {4}, {5}} which

satisfies the conditions of generalized balance (C(G) =

0, k∗ = 3).

Using the above definitions and concepts, we analyze

signed networks of US Congress legislators [14, 15] in the

Senate and House of Representatives based on their clus-

terability for different number of subsets. To be more

precise, we use exact optimization models (mixed-integer

and binary linear programming models) [10, 2] to com-

pute clusterability indices of the networks and analyze

optimal partitionings. Substantively, this analysis allows

examining the US Congress similar to a parliamentary

body, where coalitions form to achieve a majority voting

bloc.

Previous studies on the same data show that signed

networks of US Congress are close to being balanced ac-

cording to cycle-based measures [15, 4] and optimally bi-

partitionings of the networks [5, 3]. We use more general

1



1 2

3

4

5

1

3

4

1

4

5

1 2

3

4

5

A B C 1 2

3

4

5

D

Figure 1: (A) An example signed network. (B) Evaluating balance using 3-cycles. (C) Evaluating balance via

bi-partitioning. (D) Evaluating generalized balance and clusterability via k-partitioning

mathematical models for (1) specific pre-defined values of

k [2] and (2) general value of k∗ [6, 10] which compute

the k-clusterability and clusterability indices respectively.

Our numerical results show that the clusterability in-

dices of US Congress signed networks initially decrease

for k > 2 which suggest that the signed ties between

legislators in the US Congress are more consistent with

a parliamentary-style set of coalitions than with a more

conventional two-group categorization. We also obtain the

globally minimum number of groups which minimize the

clusterability index of each network by grouping legislators

into a relatively large number of clusters k∗ >> 2.

The results demonstrate that signed network of US

Congress can be partitioned into coalitions exhibiting gen-

eralized balance and that the coalitions are not strictly

related to party membership. The initial decline of clus-

terability index when k is gradually increased shows that

the networks are more consistent with generalized balance

than classic balance theory. However, clusterability index

increases if the number of pre-defined groups is set to a

value larger than k∗ which seems to suggest that political

collaborations prevents legislators from forming too many

opposing sides.

Our observations show that legislators in US Congress

seem to act more like a parliamentary body with more

than two coalitions, but that these coalitions still mirror

broad liberal-conservative tendencies. In this presentation,

we provide our results on clusterability of US Congress

network and the dynamics of its major coalitions over

1979-2018.
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