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Summary

Finding a minimum s-t cut in a graph is one of the

most well-studied problems in combinatorial optimiza-

tion. While graphs are a useful abstraction for modeling

pairwise relationships between objects in a complex sys-

tem, hypergraphs provide a more faithful way to model

systems characterized by multiway relationships. However,

one challenge in generalizing graph cut problems to the

hypergraph setting is that there are numerous ways to

separate or cut the nodes of a hyperedge, each of which

may be better or worse for downstream applications. Here

we present a generalized framework for hypergraph s-t cut

problems based on splitting functions, which map each

node configuration of a hyperedge to a different splitting

penalty. We consider special classes of splitting functions

for which the problem can be solved in polynomial time

via reduction to a graph s-t cut problem, as well as other

cases where the problem is NP-hard. As an application, we

incorporate our techniques into a new method for localized

hypergraph clustering.

Introduction

The minimum s-t cut problem seeks a minimum weight set

of edges to cut or remove from a graph in order to separate

two designated terminal nodes s and t. The first hyper-

graph generalization of the problem was introduced by

Lawler [2], motivated by applications to information stor-

age, numerical taxonomy, and electronic circuit packaging.

Lawler specifically considered how to separate s and t in

a way that minimizes an all-or-nothing hypergraph cut

function. More precisely, this function assigns no penalty

to an uncut hyperedge, while a hyperedge that spans both

clusters incurs a penalty equal to the hyperedge’s weight,

regardless of how its nodes are separated. Under this cut

function, Lawler showed that the problem can be reduced

to a minimum s-t cut problem in a directed graph.

A number of other hypergraph clustering objectives

also rely on minimizing all-or-nothing penalties, subject

to other possible constraints such as cluster size or place-

ment of terminal nodes. However, in practice there are
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Figure 1: For 4-node hyperedges, cardinality-based func-

tions assign a penalty of w1 for 1-3 node splits (green),

and w2 for 2-2 node splits (blue). Solutions are shown for

w1 = 1. Our results show that for 4-uniform hypergraphs,

the s-t cut problem is NP-hard when w2 < w1 (a), but

reducible to a graph s-t cut problem when w2 ∈ [w1, 2w1]

(b). When w2 > 2w1 (c), the complexity is unknown, but

we show the problem is not graph reducible.

many reasons to cluster the nodes of a hyperedge together,

and different node configurations may be better or worse

depending on the application. For example, a hyperedge

may represent a sets of objects in a dataset that are as-

sociated with a similar attribute or property. This may

provide evidence that these objects should be clustered

together. If all but a small subset of them are placed in

the same cluster, this mostly agrees with the evidence, but

the all-or-nothing function penalizes this just as severely

as splitting the hyperedge perfectly in half.

While there is some limited work on generalized no-

tions of hypergraph cuts [1, 3], the literature on this topic

is somewhat fragmented. Furthermore, all previous re-

sults for the hypergraph s-t cut problem assume an all-or-

nothing penalty [2]. Here we develop a rigorous framework

for hypergraph s-t cut problems under much broader no-

tions of hypergraph cuts. Our framework relies on the

concept of a splitting function, which maps each subset of

nodes in a hyperedge to a different penalty. We introduce

a special class of cardinality-based functions, which assign

penalties based only on the number of nodes on each side

of split hyperedge. We prove that for cardinality-based

penalties, the hypergraph s-t cut problem is reducible to

a graph s-t cut problem if and only if the functions are

submodular. We also demonstrate hardness results for
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certain cases outside the submodular regime. Figure 1

illustrates key differences between three hypergraph s-t

cut problems on the same small hypergraph.

The Generalized Hypergraph s-t Cut Problem

Let H = (V,E) be a hypergraph, and for each hyperedge

e ∈ E, let 2e be the power set of e. A splitting function

we : 2e → R+ maps subsets of e to non-negative penalties.

To generalize graph cut penalties, splitting functions must

be symmetric and penalize only cut hyperedges:

we(A) = w(e\V ) for all A ⊆ e
we(A) = 0 if A = e or A = ∅.

A splitting function we is cardinality-based if we(A) =

we(B) whenever |A| = |B|. This class of functions is par-

ticularly relevant for applications, since in most situations

the quality of a clustering may depend on the number

of nodes on different sides of a cut, but the individual

identity of specific nodes is not important. A splitting

function is submodular if for every A,B ∈ 2e it satisfies

we(A) + we(B) ≥ we(A ∩B) + we(A ∪B) . (1)

The generalized hypergraph s-t cut problem is given by

min
S⊆V

∑
e∈E

we(S ∩ e) s.t. s ∈ S, t ∈ V \S . (2)

Graph Reductions and Hardness Results

We show that a number splitting functions can be modeled

by replacing a hyperedge with a small directed graph

that preserves the cut penalties of the splitting function.

This approach is related to the techniques Lawler applied

to the all-or-nothing problem, but is significantly more

general and enables us to model a broad range of splitting

functions. One of the central results of our work is to

completely characterize which hypergraph s-t cut problems

can be reduced to a graph s-t cut problem.

Theorem 1. The cardinality-based hypergraph s-t cut

problem can be reduced to a graph s-t cut problem if and

only if all splitting functions are submodular.

Outside the submodular regime, we demonstrate cases

where the problem is NP-hard, via reduction from maxcut.

Theorem 2. In uniform hypergraphs, cardinality-based

hypergraph s-t cut is NP-hard if there exists some j > 1

such that separating j nodes from the rest of the hyperedge

has a smaller penalty than separating only one node.

Proofs are available in an online preprint [4].
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Figure 2: F1 scores for each of 45 clusters in the Stackover-

flow hypergraph. FlowSeed and BN/TN are competing

methods. Our method, HyperLocal, uses generalized cut

functions and has the highest average F1 score.

Applications to Local Clustering

We can incorporate our techniques into a broader frame-

work for local hypergraph clustering [5]. Let R ⊆ V be a

small subset of nodes in a hypergraph H = (V,E). One

way to find clusters nearby R is to solve:

minimize
S⊆V

cutH(S)/(vol(R ∩ S)− εvol(R̄ ∩ S)), (3)

where cutH(S) =
∑

e∈E we(S ∩ e) is a generalized cut

function, vol measures the volume of a node set, and

ε > 0 controls the overlap between the input R and the

output S. We can minimize objective (3) by solving se-

quence of localized minimum s-t cut problems. As an

example, we solve this objective over a hypergraph made

up of question posts (nodes) on stackoverflow.com, or-

ganized into sets of posts answered by the same user

(hyperedges). The hypergraph has 15 million nodes, 1.1

million hyperedges, and a maximum hyperedge size of

61,315. We optimize (3) to find sets of posts with the

same tag (e.g. “netsuite”), by starting with a seed set

R containing a small subset of nodes with the same tag.

Using a single-parameter family of generalized splitting

functions, we(A) = min{|A|, |e\A|, δ}, we detect these

clusters better than baseline methods (Figure 2).
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