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Summary

Widely used centrality models rely on the Perron eigen-
vector of nonnegative graph matrices. These models typ-
ically require strongly connected graphs and are equiva-
lent to defining the centrality of each node through a set
of mutual reinforcing linear relations. We present a new
result that allows us to use the Perron eigenvector of a
much wider class of nonnegative graph operators and to
consider mutual reinforcing nonlinear relations, that can
for example account for higher-order interactions or mul-
tilayer data, without any requirement on the connectivity
of the input network.

Eigenvector centralities

A centrality for a network G is a vector u ≥ 0 such that
ui quantifies the importance of the node i, according to a
model that exploits only the structure of the connections
in G. A larger value indicates greater importance. Fur-
ther, we require 1Tu = u1 + · · ·+un = 1, so that each ui

can be interpreted as a percentage of importance.
An eigenvector centrality is a centrality defined as the

eigenvector of a suitable graph matrix. For example, the
Bonacich centrality [1] defines u as a Perron eigenvector
of the adjacency matrix A, that is, a nonnegative u such
that Au = λu, with λ > 0 and 1Tu = 1. Another popular
example is Google’s PageRank centrality [5], which defines
u as the positive stationary distribution of the PageRank
random walk transition matrix P , i.e. Pu = u.

In general, we can formally associate an eigenvector cen-
trality MGu = λu to any entrywise nonnegative graph
matrix MG. Then, provided MG has enough nonzero
entries1, the Perron–Frobenius (PF) theorem guarantees
that the centrality u exists, it is unique and it can be
efficiently computed with a power method [7].

Nonlinear eigenvector centralities

By inspecting the entrywise relation defining the
Bonacich centrality Au = λu, we see that this model

1Precisely one needs MG to be a primitive matrix, i.e. irreducible
and such that (MG)k > 0 for some k ≥ 1.

defines ui to be proportional to the weighted sum of the
centrality scores of the neighbors of i, that is,

ui ∝
∑
j

Aijuj = (Au)i. (1)

We generalize this linear relation by means of nonlinear
eigenvector centralities. For example, consider a nonneg-
ative2 mapping f : Rn → Rn such that f(x)i = f(xi) for
any x ∈ Rn. If f is nonnegative, a nonlinear Bonacich
centrality for the node i can be defined via the propor-
tional relation

ui ∝
∑
j

Aij f(u)j =
(
Af(u)

)
i
.

Note that this relation is equivalent to the nonlinear eigen-
vector equation Af(u) = λu and, more in general, we can
associate a nonlinear eigenvector centrality

MG(u) = λu

to any nonnegative operator MG : Rn → Rn which ex-
ploits the graph topology in some sense.

Nonlinearity brings in two main advantages:

1. It allows us to incorporate into the centrality model
a broad range of different (and possibly higher-order)
topological properties;

2. It allows us to weaken the assumptions of the Perron–
Frobenius theorem, in particular it allows us to drop
the requirement on the nonzero entries of the graph
matrix MG.

For example, in the case of linear Bonacich centrality we
have MG = A and the PF theorem would require the
network to be strongly connected and aperiodic which
is both (a) an expensive property to verify and (b) very
rarely true in real-world data. Nonlinearity allows us to
overcome these potential issues by relaxing the assump-
tions of the PF theorem. Precisely, the following result
holds (the proof will be published in our next work [6]
and it is partially based on [4])

2We say that f is nonnegative if f(x) ≥ 0 for all x ≥ 0.
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Theorem 1. Let ∂MG denote the Jacobian of MG. If
|∂MG(x)|x < MG(x) for all x > 0, then there exists a
unique nonlinear eigenvector centrality u > 0, 1Tu = 1

such that MG(u) = λu and we can compute u to an arbi-
trary precision ε in O(c(MG) log(1/ε)) operations, where
c(MG) is the cost of applying MG.

The talk will go deeper into this result by discussing
several consequences in terms of optimization and appli-
cation examples including the case of multilayer networks
and nonnegative adjacency tensors. The following two ex-
amples help gaining further insight

Example 1

If MG(x) = Af(x) as in the nonlinear Bonacich model
discussed above, the requirement of Theorem 1 boils down
to |f ′(xi)|xi < xi. Note that this inequality does not
hold for the linear case as f(x) = x implies f ′(xi) = 1

and we have |f ′(xi)|xi = xi in that case. In fact, we
know that connectivity assumptions are required in that
situation. However, if f(x) = xθ for some 0 < θ < 1, we
have f ′(xi)xi = θf(xi) and we are guaranteed a unique
nonlinear Bonacich centrality.

For example, in a very disconnected network with n

isolated nodes, each having a self-loop, we have

G = A =


1

. . .
1


and any centrality vector is a Bonacich centrality, as
Au = u, for all u > 0. However, the equation Auθ = λu

is satisfied only by u = 1 and λ = 1, i.e. the unique
nonlinear Bonacich centrality score is the “natural one”,
which assigns same score to all the isolated node.

Example 2

Suppose we are given a train transportation network. We
have access only to the topology of connections between
stations and we would like to identify highly populated
stations. To this end, we may argue that a passenger
prefers to use a station over another if it is well con-
nected to important stations but at the same time it is
surrounded by stations that are of minor relevance, in this
way passengers are somewhat instinctively motivated to
reach that station rather than using a less popular station
in its neighborhood. So, if ui is a measure accounting for
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Figure 1: Left: Visualization of the test function f on
a single variable x ∈ R. Right: Intersection similarity
between the sequence of stations sorted according to the
actual number of passengers and according to the linear
and nonlinear Bonacich centralities.

the popularity of a station, then ui should grow if either
many popular stations or many unpopular stations are in
the neighborhood of i. To account for this we consider
the “unsmoothed” modulus function f(x) = |x − 1/2|θ,
θ ∈ (0, 1), and the associated nonlinear Bonacich central-
ity Af(u) = λu. The advantages of this model are high-
lighted in Figure 1, where we show the intersection simi-
larity (ISIM) between the the top twenty stations identi-
fied by u and the actual top-twenty most populated sta-
tions in London vs those identified by the linear Bonacich
centrality. Recall that the lower is the ISIM the more the
two sequences match. London rail and passenger data
has been taken from [3, 2], respectively.

References
[1] P. Bonacich. Power and centrality: A family of measures. Amer-

ican journal of sociology, 92(5):1170–1182, 1987.

[2] S. Cipolla, F. Durastante, and F. Tudisco. Nonlocal PageRank.
arxiv:2001.10421, 2020.

[3] M. De Domenico, A. Solé-Ribalta, S. Gómez, and A. Arenas.
Navigability of interconnected networks under random failures.
Proceedings of the National Academy of Sciences, 111(23):8351–
8356, 2014.

[4] A. Gautier, F. Tudisco, and M. Hein. The Perron–Frobenius
theorem for multihomogeneous mappings. SIAM Journal on
Matrix Analysis and Applications, 40(3):1179–1205, 2019.

[5] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999.

[6] F. Tudisco, A. Gautier, and D. J. Higham. Learning with non-
linear Perron eigenvectors. (in preparation).

[7] R. Varga. Matrix Iterative Analysis. Springer Series in Compu-
tational Mathematics. Springer Berlin Heidelberg, 1999.

2


	Eigenvector centralities
	Nonlinear eigenvector centralities

