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Abstract

Many real-world networks carry a natural notion of

strength of connection between nodes, which are often

modeled by a weighted graph, but existing scalable graph

algorithms for pattern mining are designed for unweighted

graphs. Here, we develop a suite of deterministic and ran-

dom sampling algorithms that enable the fast discovery

of the 3-cliques (triangles) with the largest weight in a

graph, where weight is measured by a generalized mean

of a triangle’s edges. For example, one of our proposed

algorithms can find the top-1000 weighted triangles of a

weighted graph with billions of edges in thirty seconds on

a commodity server, which is orders of magnitude faster

than existing “fast” enumeration schemes.

Introduction

Small subgraph patterns, also called graphlets or network

motifs, have proven fundamental for the understanding of

the structure of complex networks [3]. One of the simplest

non-trivial subgraph patterns is the triangle (3-clique), and

the basic problem of triangle counting and enumeration

has been studied extensively from theoretical and practical

perspectives [10]. The focus on triangles is in part spurred

by the widespread use of the pattern in graph mining

applications, including community detection [7], network

comparison [5], representation learning [8], and generative

modeling [6]. In addition, triangle-based network statistics

such as the clustering coefficient are used extensively in

the social sciences [11].

Nearly all of the algorithmic literature on scalable count-

ing or enumeration of triangles focuses on unweighted

graphs. However, many real-world network datasets have

a natural notion of weight attached to the edges of the

graph [1]. However, edge weights can enrich the types of

small subgraph patterns that are used in analysis. For

instance, the network clustering coefficient has been gen-

eralized to account for edge weights [4]; in these cases,

a triangle is given a weight derived from the weights of
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its constituent edges. All this being said, we still lack

the algorithmic tools for fast analysis of modern large-

scale weighted networks, especially in the area of weighted

triangle listing and counting.

In applications of weighted triangles in this big data

regime, it can often suffice to retrieve only the k triangles

of largest weight for some suitable k. For example, in large

online social networks, the weight of an edge could reflect

how likely it is for users to communicate with each other,

and top weighted triangles and cliques in this network

could be used for group chat recommendations. In such

a scenario, we would typically only be interested in a

small number of triangles whose nodes are very likely to

communicate with each other as opposed to finding all

triangles in the graph.

Another application for finding top-weighted triangles

appears in prediction tasks involving higher-order network

interactions. The goal of the “higher-order link prediction”

problem is to predict which new groups of nodes will

simultaneously interact (such as which group of authors

will co-author a scientific paper in the future) [2]. In this

setting, existing algorithms first create a weighted graph

where an edge weight is the number of prior interactions

that involves the two end points and then predict that

the top-weighted triangles in this weighted graph will

appear as higher-order interactions in the future. Again,

it is not necessary to find all triangles since only the

top predictions will be acted upon. Existing triangle

enumeration algorithms do not scale to massive graphs

for these problems, and we need efficient algorithms for

retrieving triangles in large weighted graphs.

In this work, we address the problem of enumerating the

top-weighted triangles in a weighted graph. To be precise,

let G = (V,E,w) be a simple, undirected graph with

positive edge weights w. We define the weight of a triangle

in G be equal to the generalized p-mean; specifically, if a

triangle (i, j, k) has edge weights wij , wjk, and wik, then
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the triangle weight is

mp(i, j, k) :=

[
1

3
(wp

ij + wp
jk + wp

ik)

]1/p
. (1)

Given G and an integer parameter k, we develop algo-

rithms to extract the top-k heaviest triangles in G. Note

that some special cases of the p-mean include arithmetic

mean (p = 1), geometric mean (p = 0), harmonic mean

(p = −1), minimum (p = −∞) and maximum (p = ∞).

This family of means is more general and includes those

previously examined by Opsahl and Panzarasa [4] and

Benson et al. [2].

Methods and Results

At a high level, we develop two families of algorithms for

extracting top-weighted triangles. The first family of algo-

rithms is deterministic and optimized for extracting top-k

weighted triangles for small k (typically up to a few tens

of thousands). These algorithms take advantage of the

inherent heavy-tailed edge weight distribution common in

real-world networks. In the most general case, we show

that under a modified configuration model, these algo-

rithms are even “distribution-oblivious”, in the sense that

they can automatically compute optimal hyper-parameters

to the algorithm for a wide range of input graph distri-

butions. Additionally, the algorithmic analysis is done in

a continuous sense (rather than discrete), which may be

of independent interest. The second family of algorithms

is randomized and aims to extract a large number of

heavy triangles (not necessarily the top-k). We show that

this family of sampling algorithms is closely connected to

the prior sampling algorithms for counting triangles on

unweighted graphs [9] and is easily parallelizable.

We find that a carefully tuned parallel implementation

of our deterministic algorithm performs well across a broad

range of large weighted graphs, even outperforming the

fast random sampling algorithms that are not guaranteed

to enumerate all of the top-weighted triangles. A parallel

implementation of our algorithm running on a commodity

server with 64 cores can find the top 1000 weighted tri-

angles in 30 seconds on a graph with nearly two billion

weighted edges. We compare this with the off-the-shelf

alternative approach, which would be an intelligent tri-

angle enumeration algorithm that maintains a heap of

the top-weighted triangles. Our proposed algorithms are

orders of magnitude faster than this standard approach

(see Table 1).

Table 1: Summary statistics of datasets and time (s) for

computing top-1000 triangles.

dataset # nodes # edges
edge weight

mean max

Ethereum 38M 103M 2.8 1.9M

AMiner 93M 324M 1.3 13K

reddit-reply 8.4M 435M 1.5 165K

MAG 173M 545M 1.7 38K

Spotify 3.6M 1.9B 8.6 2.8M

dataset brute force sampling deterministic

Ethereum 52.91 9.03 6.94

Aminer 243.75 3.72 12.36

reddit-reply 4047.62 5.19 4.74

MAG 512.24 4.92 20.89

Spotify >86400 60.33 30.79
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